
Kirstan A Vessey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7674866/publications.pdf Version: 2024-02-01

KIDSTAN & VESSEV

#	Article	IF	CITATIONS
1	Treatments targeting autophagy ameliorate the age-related macular degeneration phenotype in mice lacking APOE (apolipoprotein E). Autophagy, 2022, 18, 2368-2384.	9.1	14
2	Retinal ganglion cell dysfunction in mice following acute intraocular pressure is exacerbated by P2X7 receptor knockout. Scientific Reports, 2021, 11, 4184.	3.3	10
3	Deficits in Monocyte Function in Age Related Macular Degeneration: A Novel Systemic Change Associated With the Disease. Frontiers in Medicine, 2021, 8, 634177.	2.6	10
4	Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	45
5	Potential mechanisms of retinal ganglion cell typeâ€specific vulnerability in glaucoma. Australasian journal of optometry, The, 2020, 103, 562-571.	1.3	15
6	Photoreceptor Degeneration in Pro23His Transgenic Rats (Line 3) Involves Autophagic and Necroptotic Mechanisms. Frontiers in Neuroscience, 2020, 14, 581579.	2.8	12
7	Fluorescent Labeling and Quantification of Vesicular ATP Release Using Live Cell Imaging. Methods in Molecular Biology, 2020, 2041, 209-221.	0.9	8
8	Animal Models of Diseases of the Retinal Pigment Epithelium. , 2020, , 325-347.		0
9	Animal and Human Models of Retinal Diseases. , 2020, , 590-613.		0
10	The renin-angiotensin system and the retinal neurovascular unit: A role in vascular regulation and disease. Experimental Eye Research, 2019, 187, 107753.	2.6	26
11	Targeting P2X7 receptors as a means for treating retinal disease. Drug Discovery Today, 2019, 24, 1598-1605.	6.4	21
12	Rod Photoreceptor Activation Alone Defines the Release of Dopamine in the Retina. Current Biology, 2019, 29, 763-774.e5.	3.9	43
13	Prophylactic laser in age-related macular degeneration: the past, the present and the future. Eye, 2018, 32, 972-980.	2.1	9
14	The Role of the Microglial Cx3cr1 Pathway in the Postnatal Maturation of Retinal Photoreceptors. Journal of Neuroscience, 2018, 38, 4708-4723.	3.6	34
15	Ganglion Cell Assessment in Rodents with Retinal Degeneration. Methods in Molecular Biology, 2018, 1753, 261-273.	0.9	1
16	Failure of Autophagy–Lysosomal Pathways in Rod Photoreceptors Causes the Early Retinal Degeneration Phenotype Observed in <i>Cln6^{nclf}</i> Mice. , 2018, 59, 5082.		27
17	The Role of Angiotensin II/AT1 Receptor Signaling in Regulating Retinal Microglial Activation. , 2018, 59, 487.		22
18	Nanosecond Laser Treatment for Age-Related Macular Degeneration Does Not Induce Focal Vision Loss or New Vessel Growth in the Retina. , 2018, 59, 731.		14

KIRSTAN A VESSEY

#	Article	IF	CITATIONS
19	Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice. American Journal of Pathology, 2017, 187, 1670-1685.	3.8	34
20	Diamond Devices for High Acuity Prosthetic Vision. Advanced Biology, 2017, 1, e1600003.	3.0	35
21	Micro-CT and Histological Evaluation of an Neural Interface Implanted Within a Blood Vessel. IEEE Transactions on Biomedical Engineering, 2017, 64, 928-934.	4.2	35
22	Connexin43 Mimetic Peptide Improves Retinal Function and Reduces Inflammation in a Light-Damaged Albino Rat Model. , 2016, 57, 3961.		47
23	Stimulation of a Suprachoroidal Retinal Prosthesis Drives Cortical Responses in a Feline Model of Retinal Degeneration. , 2016, 57, 5216.		20
24	Retinal Changes in an ATP-Induced Model of Retinal Degeneration. Frontiers in Neuroanatomy, 2016, 10, 46.	1.7	17
25	Changes in ganglion cells during retinal degeneration. Neuroscience, 2016, 329, 1-11.	2.3	30
26	How Azobenzene Photoswitches Restore Visual Responses to the Blind Retina. Neuron, 2016, 92, 100-113.	8.1	56
27	X-ray fluorescence microscopic measurement of elemental distribution in the mouse retina with age. Metallomics, 2016, 8, 1110-1121.	2.4	5
28	Correlation of Histologic Features with InÂVivo Imaging of Reticular Pseudodrusen. Ophthalmology, 2016, 123, 1320-1331.	5.2	107
29	Localization and Possible Function of P2X Receptors in Normal and Diseased Retinae. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 509-517.	1.4	16
30	Inner retinal change in a novel rd1-FTL mouse model of retinal degeneration. Frontiers in Cellular Neuroscience, 2015, 9, 293.	3.7	13
31	Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain. Frontiers in Cellular Neuroscience, 2015, 9, 389.	3.7	44
32	Assessment of Retinal Function and Morphology in Aging Ccl2 Knockout Mice. Investigative Ophthalmology and Visual Science, 2015, 56, 1238-1252.	3.3	32
33	Nanosecond laser therapy reverses pathologic and molecular changes in ageâ€related macular degeneration without retinal damage. FASEB Journal, 2015, 29, 696-710.	O.5	91
34	ATP-Induced Photoreceptor Death in a Feline Model of Retinal Degeneration. Investigative Ophthalmology and Visual Science, 2014, 55, 8319-8329.	3.3	33
35	Adenosine triphosphateâ€induced photoreceptor death and retinal remodeling in rats. Journal of Comparative Neurology, 2014, 522, 2928-2950.	1.6	33
36	The Vasoneuronal Effects of AT ₁ Receptor Blockade in a Rat Model of Retinopathy of Prematurity. , 2014, 55, 3957.		15

3

KIRSTAN A VESSEY

#	Article	IF	CITATIONS
37	Studying Age-Related Macular Degeneration Using Animal Models. Optometry and Vision Science, 2014, 91, 878-886.	1.2	78
38	Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience, 2014, 277, 55-71.	2.3	26
39	The Role of Histamine in the Retina: Studies on the Hdc Knockout Mouse. PLoS ONE, 2014, 9, e116025.	2.5	11
40	Functional and neurochemical development in the normal and degenerating mouse retina. Journal of Comparative Neurology, 2013, 521, 1251-1267.	1.6	60
41	A rare functional haplotype of the <i>P2RX4</i> and <i>P2RX7</i> genes leads to loss of innate phagocytosis and confers increased risk of ageâ€related macular degeneration. FASEB Journal, 2013, 27, 1479-1487.	0.5	61
42	A Naturally Occurring Mouse Model of Achromatopsia: Characterization of the Mutation in Cone Transducin and Subsequent Retinal Phenotype. , 2013, 54, 3350.		45
43	Retinal Prosthesis Safety: Alterations in Microglia Morphology due to Thermal Damage and Retinal Implant Contact. , 2012, 53, 7802.		26
44	Electronic restoration of vision in those with photoreceptor degenerations. Australasian journal of optometry, The, 2012, 95, 473-483.	1.3	18
45	Amyloid Precursor Protein Is Required for Normal Function of the Rod and Cone Pathways in the Mouse Retina. PLoS ONE, 2012, 7, e29892.	2.5	33
46	Ccl2/Cx3cr1 Knockout Mice Have Inner Retinal Dysfunction but Are Not an Accelerated Model of AMD. , 2012, 53, 7833.		53
47	Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington's disease. Neurobiology of Disease, 2012, 45, 887-896.	4.4	37
48	Alternative pathways in the development of diabetic retinopathy: the reninâ€angiotensin and kallikreinâ€kinin systems. Australasian journal of optometry, The, 2012, 95, 282-289.	1.3	15
49	The Role of the P2X7 Receptor in the Retina: Cell Signalling and Dysfunction. Advances in Experimental Medicine and Biology, 2012, 723, 813-819.	1.6	7
50	Rod and Cone Pathway Signalling Is Altered in the P2X7 Receptor Knock Out Mouse. PLoS ONE, 2012, 7, e29990.	2.5	63
51	Early Inner Retinal Astrocyte Dysfunction during Diabetes and Development of Hypoxia, Retinal Stress, and Neuronal Functional Loss. , 2011, 52, 9316.		140
52	Characterization of retinal function and glial cell response in a mouse model of oxygenâ€induced retinopathy. Journal of Comparative Neurology, 2011, 519, 506-527.	1.6	99
53	Animal Models of Retinal Disease. Progress in Molecular Biology and Translational Science, 2011, 100, 211-286.	1.7	89
54	The significance of neuronal and glial cell changes in the rat retina during oxygen-induced retinopathy. Documenta Ophthalmologica, 2010, 120, 67-86.	2.2	53

KIRSTAN A VESSEY

#	Article	IF	CITATIONS
55	The renin–angiotensin system in retinal health and disease: Its influence on neurons, glia and the vasculature. Progress in Retinal and Eye Research, 2010, 29, 284-311.	15.5	123
56	The Role of Purinergic Receptors in Retinal Function and Disease. Advances in Experimental Medicine and Biology, 2010, 664, 385-391.	1.6	16
57	Neuronal and glial cell expression of angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the rat retina. Neuroscience, 2009, 161, 195-213.	2.3	56
58	Allelic variance between GRM6 mutants, <i>Grm6^{nob3}</i> and <i>Grm6^{nob4}</i> results in differences in retinal ganglion cell visual responses. Journal of Physiology, 2008, 586, 4409-4424.	2.9	63
59	Generation, identification and functional characterization of thenob4mutation ofGrm6in the mouse. Visual Neuroscience, 2007, 24, 111-123.	1.0	61
60	Nyctalopin Expression in Retinal Bipolar Cells Restores Visual Function in a Mouse Model of Complete X-Linked Congenital Stationary Night Blindness. Journal of Neurophysiology, 2007, 98, 3023-3033.	1.8	90
61	The <i>nob2</i> mouse, a null mutation in <i>Cacna1f</i> : Anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Visual Neuroscience, 2006, 23, 11-24.	1.0	194
62	Glucagon- and Secretin-Related Peptides Differentially Alter Ocular Growth and the Development of Form-Deprivation Myopia in Chicks. , 2005, 46, 3932.		48
63	Glucagon Receptor Agonists and Antagonists Affect the Growth of the Chick Eye: A Role for Glucagonergic Regulation of Emmetropization?. , 2005, 46, 3922.		57
64	Muscarinic receptor protein expression in the ocular tissues of the chick during normal and myopic eye development. Developmental Brain Research, 2002, 135, 79-86.	1.7	16
65	Angiotensin-Induced Enhancement of Excitatory Junction Potentials Evoked by Periarteriolar Nerve Stimulation and Vasoconstriction in Rat Mesenteric Arteries Are Both Mediated by the Angiotensin AT1 Receptor. Pharmacology, 2001, 63, 103-111.	2.2	10
66	Diisopropylfluorophosphate alters retinal neurotransmitter levels and reduces experimentally-induced myopia. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 372-382.	3.0	25
67	Rod Photoreceptor Activation Alone Defines the Release of Dopamine in the Retina. SSRN Electronic Journal, 0, , .	0.4	0
68	Neuronal TrkB Drives Oligodendrocyte Production and Central Myelination. SSRN Electronic Journal, O, , .	0.4	0