
Keith M Erikson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7674843/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Manganese Neurotoxicity. Annals of the New York Academy of Sciences, 2004, 1012, 115-128.	1.8	432
2	Manganese Dosimetry: Species Differences and Implications for Neurotoxicity. Critical Reviews in Toxicology, 2005, 35, 1-32.	1.9	277
3	Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacology Biochemistry and Behavior, 2001, 69, 409-418.	1.3	265
4	Manganese and its Role in Parkinson's Disease: From Transport to Neuropathology. NeuroMolecular Medicine, 2009, 11, 252-266.	1.8	258
5	Iron Deficiency Alters Dopamine Transporter Functioning in Rat Striatum. Journal of Nutrition, 2000, 130, 2831-2837.	1.3	232
6	Regional Brain Iron, Ferritin and Transferrin Concentrations during Iron Deficiency and Iron Repletion in Developing Rats. Journal of Nutrition, 1997, 127, 2030-2038.	1.3	210
7	Manganese neurotoxicity: A focus on the neonate. , 2007, 113, 369-377.		207
8	Manganese neurotoxicity and glutamate-GABA interaction. Neurochemistry International, 2003, 43, 475-480.	1.9	199
9	Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environmental Toxicology and Pharmacology, 2005, 19, 415-421.	2.0	189
10	In Vivo Dopamine Metabolism Is Altered in Iron-Deficient Anemic Rats. Journal of Nutrition, 1997, 127, 2282-2288.	1.3	168
11	Manganese Accumulates in Iron-Deficient Rat Brain Regions in a Heterogeneous Fashion and Is Associated with Neurochemical Alterations. Biological Trace Element Research, 2002, 87, 143-156.	1.9	155
12	Manganese exposure and induced oxidative stress in the rat brain. Science of the Total Environment, 2004, 334-335, 409-416.	3.9	140
13	The effects of manganese on glutamate, dopamine and Î ³ -aminobutyric acid regulation. Neurochemistry International, 2006, 48, 426-433.	1.9	137
14	Ferroportin is a manganeseâ€responsive protein that decreases manganese cytotoxicity and accumulation. Journal of Neurochemistry, 2010, 112, 1190-1198.	2.1	132
15	Obesity Alters Adipose Tissue Macrophage Iron Content and Tissue Iron Distribution. Diabetes, 2014, 63, 421-432.	0.3	131
16	Neurobehavioral analysis of developmental iron deficiency in rats. Behavioural Brain Research, 2002, 134, 517-524.	1.2	121
17	Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. Journal of Nutritional Biochemistry, 2004, 15, 335-341.	1.9	114
18	Manganese Causes Differential Regulation of Clutamate Transporter (GLAST) Taurine Transporter and Metallothionein in Cultured Rat Astrocytes. NeuroToxicology, 2002, 23, 595-602.	1.4	108

KEITH M ERIKSON

#	Article	IF	CITATIONS
19	Manganese Inhalation by Rhesus Monkeys is Associated with Brain Regional Changes in Biomarkers of Neurotoxicity. Toxicological Sciences, 2007, 97, 459-466.	1.4	107
20	Changes in Dietary Iron Exacerbate Regional Brain Manganese Accumulation as Determined by Magnetic Resonance Imaging. Toxicological Sciences, 2011, 120, 146-153.	1.4	93
21	Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. NeuroToxicology, 2006, 27, 125-130.	1.4	89
22	Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone, 2009, 45, 972-979.	1.4	83
23	Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Archives of Toxicology, 2013, 87, 1231-1244.	1.9	76
24	In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function. PLoS ONE, 2012, 7, e33057.	1.1	75
25	Inhibition of DAT function attenuates manganese accumulation in the globus pallidus. Environmental Toxicology and Pharmacology, 2007, 23, 179-184.	2.0	73
26	Manganese. Advances in Nutrition, 2017, 8, 520-521.	2.9	73
27	Measuring Brain Manganese and Iron Accumulation in Rats following 14 Weeks of Low-Dose Manganese Treatment Using Atomic Absorption Spectroscopy and Magnetic Resonance Imaging. Toxicological Sciences, 2008, 103, 116-124.	1.4	70
28	Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. NeuroToxicology, 2008, 29, 377-385.	1.4	69
29	Oxidative Stress Is Induced in the Rat Brain Following Repeated Inhalation Exposure to Manganese Sulfate. Biological Trace Element Research, 2003, 93, 113-126.	1.9	65
30	Diseaseâ€ŧoxicant screen reveals a neuroprotective interaction between Huntington's disease and manganese exposure. Journal of Neurochemistry, 2010, 112, 227-237.	2.1	64
31	Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter. Environmental Toxicology and Pharmacology, 2005, 20, 390-394.	2.0	56
32	Iron Deficiency in Young Rats Alters the Distribution of Vitamin A between Plasma and Liver and between Hepatic Retinol and Retinyl Esters. Journal of Nutrition, 1999, 129, 1223-1228.	1.3	54
33	Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain. NeuroToxicology, 2008, 29, 1044-1053.	1.4	54
34	Glutamate/Aspartate Transporter (GLAST), Taurine Transporter and Metallothionein mRNA Levels are Differentially Altered in Astrocytes Exposed to Manganese Chloride, Manganese Phosphate or Manganese Sulfate. NeuroToxicology, 2002, 23, 281-288.	1.4	52
35	Altered Manganese Homeostasis and Manganese Toxicity in a Huntington's Disease Striatal Cell Model Are Not Explained by Defects in the Iron Transport System. Toxicological Sciences, 2010, 117, 169-179.	1.4	52
36	Alterations of Oxidative Stress Biomarkers Due to In Utero and Neonatal Exposures of Airborne Manganese. Biological Trace Element Research, 2006, 111, 199-216.	1.9	48

KEITH M ERIKSON

#	Article	IF	CITATIONS
37	PARK2 patient neuroprogenitors show increased mitochondrial sensitivity to copper. Neurobiology of Disease, 2015, 73, 204-212.	2.1	47
38	Brain Manganese Accumulation is Inversely Related to Î ³ -Amino Butyric Acid Uptake in Male and Female Rats. Toxicological Sciences, 2007, 95, 188-195.	1.4	46
39	Effects of inhaled manganese on biomarkers of oxidative stress in the rat brain. NeuroToxicology, 2006, 27, 788-797.	1.4	45
40	Genetic risk for Parkinson's disease correlates with alterations in neuronal manganese sensitivity between two human subjects. NeuroToxicology, 2012, 33, 1443-1449.	1.4	43
41	Effects of Manganese (Mn) on the Developing Rat Brain: Oxidative-Stress Related Endpoints. NeuroToxicology, 2002, 23, 169-175.	1.4	42
42	Extracellular norepinephrine, norepinephrine receptor and transporter protein and mRNA levels are differentially altered in the developing rat brain due to dietary iron deficiency and manganese exposure. Brain Research, 2009, 1281, 1-14.	1.1	39
43	Waterborne manganese exposure alters plasma, brain, and liver metabolites accompanied by changes in stereotypic behaviors. Neurotoxicology and Teratology, 2012, 34, 27-36.	1.2	37
44	Iron and manganese-related CNS toxicity: mechanisms, diagnosis and treatment. Expert Review of Neurotherapeutics, 2019, 19, 243-260.	1.4	37
45	10. Manganese: Its Role in Disease and Health. , 2019, 19, 253-266.		37
46	Airborne Manganese Exposure Differentially Affects End Points of Oxidative Stress in an Age- and Sex-Dependent Manner. Biological Trace Element Research, 2004, 100, 049-062.	1.9	36
47	Persistent Alterations in Biomarkers of Oxidative Stress Resulting from Combined In Utero and Neonatal Manganese Inhalation. Biological Trace Element Research, 2005, 104, 151-164.	1.9	33
48	A Chronic Iron-Deficient/High-Manganese Diet in Rodents Results in Increased Brain Oxidative Stress and Behavioral Deficits in the Morris Water Maze. Neurotoxicity Research, 2009, 15, 167-178.	1.3	33
49	Manganese exposure inhibits the clearance of extracellular GABA and influences taurine homeostasis in the striatum of developing rats. NeuroToxicology, 2010, 31, 639-646.	1.4	32
50	Effects of developmental manganese, stress, and the combination of both on monoamines, growth, and corticosterone. Toxicology Reports, 2014, 1, 1046-1061.	1.6	27
51	MFe ^{hi} adipose tissue macrophages compensate for tissue iron perturbations in mice. American Journal of Physiology - Cell Physiology, 2018, 315, C319-C329.	2.1	26
52	Huntington's disease genotype suppresses global manganese-responsive processes in pre-manifest and manifest YAC128 mice. Metallomics, 2020, 12, 1118-1130.	1.0	17
53	The impact of obesity on brain iron levels and α-synuclein expression is regionally dependent. Nutritional Neuroscience, 2019, 22, 335-343.	1.5	15
54	Manganese accumulation in membrane fractions of primary astrocytes is associated with decreased γ-aminobutyric acid (GABA) uptake, and is exacerbated by oleic acid and palmitate. Environmental Toxicology and Pharmacology, 2014, 37, 1148-1156.	2.0	9

KEITH M ERIKSON

#	Article	IF	CITATIONS
55	The Effects of Dietary Fat and Iron Interaction on Brain Regional Iron Contents and Stereotypical Behaviors in Male C57BL/6J Mice. Frontiers in Nutrition, 2016, 3, 20.	1.6	9
56	The influence of sex and strain on trace element dysregulation in the brain due to diet-induced obesity. Journal of Trace Elements in Medicine and Biology, 2021, 63, 126661.	1.5	7
57	Diet-Induced Obesity Disrupts Trace Element Homeostasis and Gene Expression in the Olfactory Bulb. Nutrients, 2020, 12, 3909.	1.7	6
58	YAC128 mouse model of Huntington disease is protected against subtle chronic manganese (Mn)-induced behavioral and neuropathological changes. NeuroToxicology, 2021, 87, 94-105.	1.4	5
59	The impact of a high-fat diet on physical activity and dopamine neurochemistry in the striatum is sex and strain dependent in C57BL/6J and DBA/2J mice. Nutritional Neuroscience, 2021, , 1-15.	1.5	4
60	Elevated whole blood manganese is associated with impaired cognition in older adults, NHANES 2013–2014 cycle. NeuroToxicology, 2022, 91, 94-99.	1.4	3
61	Genetic differences in ethanol consumption: effects on iron, copper, and zinc regulation in mouse hippocampus. BioMetals, 2021, 34, 1059-1066.	1.8	2
62	Transport and Biological Impact of Manganese. , 2010, , 127-141.		1
63	The Neurochemical Alterations Associated with Manganese Toxicity. , 2012, , 549-567.		1
64	Dietaryâ€Induced Obesity Disturbs Iron Homeostasis and Alphaâ€Synuclein Expression in C57BL/6J Mouse Brains. FASEB Journal, 2015, 29, 920.7.	0.2	0
65	Manganese Transport into the Brain: Putative Mechanisms. Me, 2008, 10, 695-700.	1.0	0