Richard Hardy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7674781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effect of Biofilms on Turbulent Flow Over Permeable Beds. Water Resources Research, 2021, 57, e2019WR026032.	1.7	4
2	The Influence of Threeâ€Ðimensional Topography on Turbulent Flow Structures Over Dunes in Unidirectional Flows. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006121.	1.0	7
3	Flexural Rigidity and Shoot Reconfiguration Determine Wake Length Behind Saltmarsh Vegetation Patches. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2176-2196.	1.0	19
4	Flow resistance and hydraulic geometry in bedrock rivers with multiple roughness length scales. Earth Surface Processes and Landforms, 2019, 44, 2437-2449.	1.2	19
5	The Importance of Monitoring Interval for Rockfall Magnitudeâ€Frequency Estimation. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2841-2853.	1.0	43
6	Rethinking flood risk communication. Natural Hazards, 2018, 92, 1665-1686.	1.6	61
7	The importance of riparian plant orientation in river flow: implications for flow structures and drag. Journal of Ecohydraulics, 2018, 3, 108-129.	1.6	1
8	Evaluating the success of public participation in integrated catchment management. Journal of Environmental Management, 2018, 228, 267-278.	3.8	33
9	The Impact of Nonequilibrium Flow on the Structure of Turbulence Over River Dunes. Water Resources Research, 2018, 54, 6566-6584.	1.7	16
10	Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency. Earth Surface Dynamics, 2018, 6, 101-119.	1.0	107
11	Flow resistance and hydraulic geometry in contrasting reaches of a bedrock channel. Water Resources Research, 2017, 53, 2278-2293.	1.7	20
12	Does the canopy mixing layer model apply to highly flexible aquatic vegetation? Insights from numerical modelling. Environmental Fluid Mechanics, 2017, 17, 277-301.	0.7	25
13	A numerical investigation into the importance of bed permeability on determining flow structures over river dunes. Water Resources Research, 2017, 53, 3067-3086.	1.7	27
14	Bed load tracer mobility in a mixed bedrock/alluvial channel. Journal of Geophysical Research F: Earth Surface, 2017, 122, 807-822.	1.0	41
15	Modeling complex flow structures and drag around a submerged plant of varied posture. Water Resources Research, 2017, 53, 2877-2901.	1.7	25
16	Patchâ€scale representation of vegetation within hydraulic models . Earth Surface Processes and Landforms, 2017, 42, 699-710.	1.2	29
17	The importance of accurately representing submerged vegetation morphology in the numerical prediction of complex river flow. Earth Surface Processes and Landforms, 2016, 41, 567-576.	1.2	34
18	On the evolution and form of coherent flow structures over a gravel bed: Insights from whole flow field visualization and measurement. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1472-1493.	1.0	40

RICHARD HARDY

#	ARTICLE	IF	CITATIONS
19	On validating predictions of plant motion in coupled biomechanical-flow models. Journal of Hydraulic Research/De Recherches Hydrauliques, 2015, 53, 808-813.	0.7	3
20	The hydraulic description of vegetated river channels: the weaknesses of existing formulations and emerging alternatives. Wiley Interdisciplinary Reviews: Water, 2014, 1, 549-560.	2.8	30
21	High-resolution numerical modelling of flow—vegetation interactions. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 775-793.	0.7	43
22	Scales and causes of heterogeneity in bars in a large multiâ€channel river: RÃo ParanÃi, Argentina. Sedimentology, 2014, 61, 1055-1085.	1.6	48
23	The role of tributary relative timing and sequencing in controlling large floods. Water Resources Research, 2014, 50, 5444-5458.	1.7	44
24	Effect of bed permeability and hyporheic flow on turbulent flow over bed forms. Geophysical Research Letters, 2014, 41, 6435-6442.	1.5	50
25	Splitting rivers at their seams: bifurcations and avulsion. Earth Surface Processes and Landforms, 2013, 38, 47-61.	1.2	204
26	River bifurcations and avulsion. Earth Surface Processes and Landforms, 2013, 38, 317-318.	1.2	4
27	Application of a roughnessâ€length representation to parameterize energy loss in 3â€D numerical simulations of large rivers. Water Resources Research, 2012, 48, .	1.7	14
28	Topographic forcing of flow partition and flow structures at river bifurcations. Earth Surface Processes and Landforms, 2012, 37, 666-679.	1.2	41
29	Quantifying the dynamics of flow within a permeable bed using time-resolved endoscopic particle imaging velocimetry (EPIV). Experiments in Fluids, 2012, 53, 51-76.	1.1	31
30	An experimental study of discharge partitioning and flow structure at symmetrical bifurcations. Earth Surface Processes and Landforms, 2011, 36, 2069-2082.	1.2	52
31	<scp>F</scp> low structures at an idealized bifurcation: a numerical experiment. Earth Surface Processes and Landforms, 2011, 36, 2083-2096.	1.2	38
32	On the relationship between flow and suspended sediment transport over the crest of a sand dune, RÃfÂo ParanÃf¡, Argentina. Sedimentology, 2010, 57, 252-272.	1.6	74
33	Coherent flow structures in a depthâ€iimited flow over a gravel surface: The influence of surface roughness. Journal of Geophysical Research, 2010, 115, .	3.3	43
34	Reconstruction of subgridâ€scale topographic variability and its effect upon the spatial structure of threeâ€dimensional river flow. Water Resources Research, 2010, 46, .	1.7	15
35	Coherent flow structures in a depthâ€limited flow over a gravel surface: The role of nearâ€bed turbulence and influence of Reynolds number. Journal of Geophysical Research, 2009, 114, .	3.3	102

Large River Channel Confluences. , 2008, , 73-91.

RICHARD HARDY

#	Article	IF	CITATIONS
37	Geomorphology Fluid Flow Modelling: Can Fluvial Flow Only Be Modelled Using a Threeâ€Đimensional Approach?. Geography Compass, 2008, 2, 215-234.	1.5	3
38	Causes of rapid mixing at a junction of two large rivers: RÃo ParanÃ; and RÃo Paraguay, Argentina. Journal of Geophysical Research, 2008, 113, .	3.3	115
39	Assessing different methods of generating a three-dimensional numerical model mesh for a complex stream bed topography. International Journal of Computational Fluid Dynamics, 2007, 21, 37-47.	0.5	11
40	Emergence of coherent flow structures over a gravel surface: A numerical experiment. Water Resources Research, 2007, 43, .	1.7	49
41	A comparison of one- and two-dimensional approaches to modelling flood inundation over complex upland floodplains. Hydrological Processes, 2007, 21, 3190-3202.	1.1	159
42	Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surface Processes and Landforms, 2007, 32, 429-446.	1.2	200
43	Form roughness and the absence of secondary flow in a large confluence–diffluence, Rio ParanÃį, Argentina. Earth Surface Processes and Landforms, 2007, 32, 155-162.	1.2	144
44	Modelling granular sediment transport over water-worked gravels. Earth Surface Processes and Landforms, 2005, 30, 1069-1076.	1.2	14
45	Morphology and flow fields of three-dimensional dunes, Rio ParanÃ _i , Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	196
46	Numerical modeling of flow processes over gravelly surfaces using structured grids and a numerical porosity treatment. Water Resources Research, 2004, 40, .	1.7	75
47	Assessing the credibility of a series of computational fluid dynamic simulations of open channel flow. Hydrological Processes, 2003, 17, 1539-1560.	1.1	58
48	Flow in meander bends with recirculation at the inner bank. Water Resources Research, 2003, 39, .	1.7	202
49	High-resolution numerical modelling of three-dimensional flows over complex river bed topography. Hydrological Processes, 2002, 16, 2261-2272.	1.1	55
50	Development of a reach scale two-dimensional finite element model for floodplain sediment deposition. Proceedings of the Institution of Civil Engineers Water and Maritime Engineering, 2000, 142, 141-156.	0.3	3