Joanna Dabrowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7674759/publications.pdf Version: 2024-02-01

IOANNA DARDOWSKA

#	Article	IF	CITATIONS
1	Limbic Neuropeptidergic Modulators of Emotion and Their Therapeutic Potential for Anxiety and Post-Traumatic Stress Disorder. Journal of Neuroscience, 2021, 41, 901-910.	3.6	18
2	Oxytocin excites BNST interneurons and inhibits BNST output neurons to the central amygdala. Neuropharmacology, 2021, 192, 108601.	4.1	7
3	Oxytocin Promotes Accurate Fear Discrimination and Adaptive Defensive Behaviors. Frontiers in Neuroscience, 2020, 14, 583878.	2.8	27
4	Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. Handbook of Behavioral Neuroscience, 2020, 26, 63-100.	0.7	34
5	Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies— potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell and Tissue Research, 2019, 375, 143-172.	2.9	47
6	Oxytocin receptors in the dorsolateral bed nucleus of the stria terminalis (BNST) bias fear learning toward temporally predictable cued fear. Translational Psychiatry, 2019, 9, 140.	4.8	38
7	Repeated shock stress facilitates basolateral amygdala synaptic plasticity through decreased cAMP-specific phosphodiesterase type IV (PDE4) expression. Brain Structure and Function, 2018, 223, 1731-1745.	2.3	13
8	Corticotropin-Releasing Factor Receptors Modulate Oxytocin Release in the Dorsolateral Bed Nucleus of the Stria Terminalis (BNST) in Male Rats. Frontiers in Neuroscience, 2018, 12, 183.	2.8	22
9	Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats. Neuropharmacology, 2017, 121, 130-139.	4.1	33
10	Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles. Psychoneuroendocrinology, 2016, 64, 66-78.	2.7	116
11	Striatal-Enriched Protein Tyrosine Phosphatase—STEPs Toward Understanding Chronic Stress-Induced Activation of Corticotrophin Releasing Factor Neurons in the Rat Bed Nucleus of the Stria Terminalis. Biological Psychiatry, 2013, 74, 817-826.	1.3	47
12	Central CRF neurons are not created equal: phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis. Frontiers in Neuroscience, 2013, 7, 156.	2.8	131
13	A transcriptomic analysis of type l–III neurons in the bed nucleus of the stria terminalis. Molecular and Cellular Neurosciences, 2011, 46, 699-709.	2.2	42
14	Neuroanatomical evidence for reciprocal regulation of the corticotrophin-releasing factor and oxytocin systems in the hypothalamus and the bed nucleus of the stria terminalis of the rat: Implications for balancing stress and affect. Psychoneuroendocrinology, 2011, 36, 1312-1326.	2.7	210
15	The response of neurons in the bed nucleus of the stria terminalis to serotonin: Implications for anxiety. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 1309-1320.	4.8	88
16	Reactivity of 5-HT1A receptor in adult rats after neonatal noradrenergic neurons' lesion — Implications for antidepressant-like action. Brain Research, 2008, 1239, 66-76.	2.2	10
17	Desensitization of 5-HT1A autoreceptors induced by neonatal DSP-4 treatment. European Neuropsychopharmacology, 2007, 17, 129-137.	0.7	14
18	Stereoselectivity of 8-OH-DPAT toward the serotonin 5-HT1A receptor: Biochemical and molecular modeling study. Biochemical Pharmacology, 2006, 72, 498-511.	4.4	18