
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7674536/publications.pdf Version: 2024-02-01

HONG-LI BAO

#	Article	IF	CITATIONS
1	Room-temperature Barbier single-atom polymerization induced emission as a versatile approach for the utilization of monofunctional carboxylic acid resources. Polymer Chemistry, 2022, 13, 592-599.	1.9	24
2	Unpredicted Concentration-Dependent Sensory Properties of Pyrene-Containing NBN-Doped Polycyclic Aromatic Hydrocarbons. Molecules, 2022, 27, 327.	1.7	3
3	Living Covalent-Anionic-Radical Polymerization via a Barbier Strategy. ACS Macro Letters, 2022, 11, 354-361.	2.3	14
4	Synthesis of unsymmetrically tetrasubstituted pyrroles and studies of AIEE in pyrrolo[1,2- <i>a</i>)pyrimidine derivatives. Chemical Science, 2022, 13, 5667-5673.	3.7	7
5	Radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters enabled by a carbon shift from an all-carbon quaternary center. Chemical Science, 2022, 13, 6836-6841.	3.7	13
6	Copperâ€Catalyzed Radical Enantioselective Carboâ€Esterification of Styrenes Enabled by a Perfluoroalkylatedâ€PyBox Ligand. Angewandte Chemie - International Edition, 2022, 61, e202202077.	7.2	21
7	Barbier Hyperbranching Polymerizationâ€Induced Emission from an ABâ€Type Monomer. Chemistry - A European Journal, 2022, 28, .	1.7	17
8	Radical transformations for allene synthesis. Chemical Science, 2022, 13, 8491-8506.	3.7	38
9	Iron-catalysed asymmetric carboazidation of styrenes. Nature Catalysis, 2021, 4, 28-35.	16.1	60
10	Copper-catalyzed three-component oxycyanation of alkenes. Organic Chemistry Frontiers, 2021, 8, 908-914.	2.3	14
11	Direct synthesis of pentasubstituted pyrroles and hexasubstituted pyrrolines from propargyl sulfonylamides and allenamides. Chemical Science, 2021, 12, 9162-9167.	3.7	15
12	Metal-free alkynylsulfonylation of vinylarenes. Organic Chemistry Frontiers, 2021, 8, 1817-1822.	2.3	4
13	Synthesis of Amidine Derivatives by Intermolecular Radical ÂAddition to Nitrile Groups of AIBN Derivatives. Synlett, 2021, 32, 395-400.	1.0	1
14	Regioselective Three-Component Synthesis of Vicinal Diamines via 1,2-Diamination of Styrenes. Organic Letters, 2021, 23, 3184-3189.	2.4	17
15	Iron atalyzed Radical Asymmetric Aminoazidation and Diazidation of Styrenes. Angewandte Chemie - International Edition, 2021, 60, 12455-12460.	7.2	43
16	Iron atalyzed Radical Asymmetric Aminoazidation and Diazidation of Styrenes. Angewandte Chemie, 2021, 133, 12563-12568.	1.6	0
17	Iron phthalocyanine-catalyzed radical phosphinoylazidation of alkenes: A facile synthesis of β-azido-phosphine oxide with a fast azido transfer step. Chinese Journal of Catalysis, 2021, 42, 1634-1640.	6.9	7
18	Iron-Catalyzed Decarboxylative Heck-Type Alkylation of Conjugate 1,3-Dienes. Chinese Journal of Organic Chemistry, 2021, 41, 2707.	0.6	3

#	Article	IF	CITATIONS
19	Barbier-Type Nitro/Nitroso Addition Polymerization as a Versatile Approach for Molecular Design of Polyarylamines through C–N Bond Formation. Macromolecules, 2021, 54, 9919-9926.	2.2	22
20	Iron-Catalyzed Asymmetric Decarboxylative Azidation. Organic Letters, 2021, 23, 8847-8851.	2.4	19
21	Asymmetric radical carboesterification of dienes. Nature Communications, 2021, 12, 6670.	5.8	24
22	Cu-Catalyzed Alkylarylation of Vinylarenes with Masked Alkyl Electrophiles. Organic Letters, 2020, 22, 620-625.	2.4	30
23	Copper-Catalyzed Enantioselective Radical 1,4-Difunctionalization of 1,3-Enynes. Journal of the American Chemical Society, 2020, 142, 18014-18021.	6.6	109
24	Radical azidation as a means of constructing C(sp3)-N3 bonds. Green Synthesis and Catalysis, 2020, 1, 86-120.	3.7	72
25	Exploitation of Monofunctional Carbonyl Resources by Barbier Polymerization for Materials with Polymerization-Induced Emission. Cell Reports Physical Science, 2020, 1, 100116.	2.8	20
26	Barbier Self-Condensing Ketyl Polymerization-Induced Emission: A Polarity Reversal Approach to Reversed Polymerizability. IScience, 2020, 23, 101031.	1.9	25
27	1,4-Fluoroamination of 1,3-Enynes en Route to Fluorinated Allenes. Organic Letters, 2020, 22, 5261-5265.	2.4	19
28	Triarylmethanolation as a versatile strategy for the conversion of PAHs into amorphization-induced emission luminogens for extremely sensitive explosive detection and fabrication of artificial light-harvesting systems. Materials Chemistry Frontiers, 2020, 4, 2435-2442.	3.2	16
29	Revealing the Iron-Catalyzed β-Methyl Scission of tert-Butoxyl Radicals via the Mechanistic Studies of Carboazidation of Alkenes. Molecules, 2020, 25, 1224.	1.7	10
30	Well-controlled polymerization of tri-vinyl dynamic covalent boroxine monomer: one dynamic covalent boroxine moiety toward a tunable penta-responsive polymer. Polymer Chemistry, 2020, 11, 2914-2922.	1.9	10
31	Copperâ€Catalyzed Enantioselective Cyano(Fluoro)Alkylation of Alkenes. Advanced Synthesis and Catalysis, 2020, 362, 2211-2215.	2.1	25
32	The Introduction of the Radical Cascade Reaction into Polymer Chemistry: A One-Step Strategy for Synchronized Polymerization and Modification. IScience, 2020, 23, 100902.	1.9	7
33	Practical Method for Reductive Deuteration of Ketones with Magnesium and D2O. Organic Letters, 2020, 22, 991-996.	2.4	21
34	Synthesis of difluoromethylated allenes through trifunctionalization of 1,3-enynes. Nature Communications, 2020, 11, 416.	5.8	44
35	Iron-Catalyzed Alkylazidation of 1,1-Disubstituted Alkenes with Diacylperoxides and TMSN ₃ . Organic Letters, 2020, 22, 3195-3199.	2.4	34
36	Copper(I)-Catalyzed Cyanoperfluoroalkylation of Alkynes. Organic Letters, 2019, 21, 7078-7083.	2.4	19

#	Article	IF	CITATIONS
37	Copper-Catalyzed Nitrogenation of Aromatic and Aliphatic Aldehydes: A Direct Route to Carbamoyl Azides. Synthesis, 2019, 51, 4645-4649.	1.2	5
38	Barbier Hyperbranching Polymerization-Induced Emission toward Facile Fabrication of White Light-Emitting Diode and Light-Harvesting Film. Journal of the American Chemical Society, 2019, 141, 16839-16848.	6.6	101
39	Iron(II)-Catalyzed Heck-Type Coupling of Vinylarenes with Alkyl Iodides. Organic Letters, 2019, 21, 776-779.	2.4	29
40	Copper-Catalyzed Radical Acyl-Cyanation of Alkenes with Mechanistic Studies on the <i>tert</i> -Butoxy Radical. ACS Catalysis, 2019, 9, 5191-5197.	5.5	50
41	Copper-catalyzed 1,4-alkylarylation of 1,3-enynes with masked alkyl electrophiles. Chemical Science, 2019, 10, 3632-3636.	3.7	80
42	Iron-Catalyzed Radical Acyl-Azidation of Alkenes with Aldehydes: Synthesis of Unsymmetrical β-Azido Ketones. Organic Letters, 2019, 21, 256-260.	2.4	41
43	Iron-Catalyzed Oxyalkylation of Terminal Alkynes with Alkyl Iodides. Organic Letters, 2019, 21, 261-265.	2.4	16
44	Iron-catalyzed carboazidation of alkenes and alkynes. Nature Communications, 2019, 10, 122.	5.8	83
45	Copper-Catalyzed Radical 1,4-Difunctionalization of 1,3-Enynes with Alkyl Diacyl Peroxides and <i>N</i> -Fluorobenzenesulfonimide. Journal of the American Chemical Society, 2019, 141, 548-559.	6.6	162
46	Iron-Catalyzed Carboiodination of Alkynes. Synthesis, 2018, 50, 2974-2980.	1.2	11
47	Protection of COOH and OH groups in acid, base and salt free reactions. Green Chemistry, 2018, 20, 1444-1447.	4.6	7
48	Metal-free intermolecular aminochlorination of unactivated alkenes. Organic Chemistry Frontiers, 2018, 5, 1303-1307.	2.3	9
49	HOTf-Catalyzed Alkyl-Heck-type Reaction. IScience, 2018, 3, 255-263.	1.9	13
50	Copper(I)-catalyzed tandem reaction: synthesis of 1,4-disubstituted 1,2,3-triazoles from alkyl diacyl peroxides, azidotrimethylsilane, and alkynes. Beilstein Journal of Organic Chemistry, 2018, 14, 2916-2922.	1.3	9
51	NBNâ€Doped Conjugated Polycyclic Aromatic Hydrocarbons as an AlEgen Class for Extremely Sensitive Detection of Explosives. Angewandte Chemie, 2018, 130, 15736-15742.	1.6	17
52	NBNâ€Doped Conjugated Polycyclic Aromatic Hydrocarbons as an AlEgen Class for Extremely Sensitive Detection of Explosives. Angewandte Chemie - International Edition, 2018, 57, 15510-15516.	7.2	67
53	A Metal-Free Approach for BrÃ,nsted Acid Promoted C–H AlkylÂation of Heteroarenes with Alkyl Peroxides. Synthesis, 2018, 50, 3250-3256.	1.2	11
54	Iron-Catalyzed Dehydrative Alkylation of Propargyl Alcohol with Alkyl Peroxides To Form Substituted 1,3-Enynes. Organic Letters, 2018, 20, 3202-3205.	2.4	40

#	Article	IF	CITATIONS
55	Ironâ€Catalyzed Vinylic Câ^'H Alkylation with Alkyl Peroxides. Chemistry - an Asian Journal, 2018, 13, 2522-2528.	1.7	9
56	Merging Visible-Light Photocatalysis and Transition-Metal Catalysis in Three-Component Alkyl-Fluorination of Olefins with a Fluoride Ion. Organic Letters, 2018, 20, 4245-4249.	2.4	55
57	Iron-Catalyzed Decarboxylative Alkyl Etherification of Vinylarenes with Aliphatic Acids as the Alkyl Source. Angewandte Chemie, 2017, 129, 3704-3708.	1.6	26
58	Iron atalyzed Decarboxylative Alkyl Etherification of Vinylarenes with Aliphatic Acids as the Alkyl Source. Angewandte Chemie - International Edition, 2017, 56, 3650-3654.	7.2	112
59	Iron catalyzed methylation and ethylation of vinyl arenes. Chemical Science, 2017, 8, 2081-2085.	3.7	80
60	Iron atalyzed Radical Decarboxylative Oxyalkylation of Terminal Alkynes with Alkyl Peroxides. Chemistry - A European Journal, 2017, 23, 10254-10258.	1.7	28
61	Iron-Catalyzed C–H Alkylation of Heterocyclic C–H Bonds. Organic Letters, 2017, 19, 46-49.	2.4	71
62	Copper-Catalyzed Ligand-Free Diazidation of Olefins with TMSN ₃ in CH ₃ CN or in H ₂ O. Organic Letters, 2017, 19, 6120-6123.	2.4	60
63	Iron-Catalyzed Carboamination of Olefins: Synthesis of Amines and Disubstituted β-Amino Acids. Journal of the American Chemical Society, 2017, 139, 13076-13082.	6.6	131
64	<i>γ</i> -Amino Butyric Acid (GABA) Synthesis Enabled by Copper-Catalyzed Carboamination of Alkenes. Organic Letters, 2017, 19, 4718-4721.	2.4	59
65	Copper-catalyzed regioselective allylic oxidation of olefins via C–H activation. Tetrahedron Letters, 2017, 58, 4125-4128.	0.7	22
66	Alkyl Esterification of Vinylarenes Enabled by Visible‣ightâ€Induced Decarboxylation. Chemistry - A European Journal, 2017, 23, 11767-11770.	1.7	37
67	Copperâ€Catalyzed Decarboxylative Alkylation of Terminal Alkynes. Advanced Synthesis and Catalysis, 2017, 359, 3720-3724.	2.1	34
68	Iron(III)-Catalyzed Ortho-Preferred Radical Nucleophilic Alkylation of Electron-Deficient Arenes. Organic Letters, 2017, 19, 6538-6541.	2.4	21
69	Recent Progress on Radical Decarboxylative Alkylation for Csp3–C Bond Formation. Synthesis, 2017, 49, 5263-5284.	1.2	77
70	Copper-catalyzed diesterification of 1,3-diene for the synthesis of allylic diester compounds. Tetrahedron Letters, 2016, 57, 3400-3403.	0.7	7
71	Hydroalkylation of terminal aryl alkynes with alkyl diacyl peroxides. Tetrahedron Letters, 2016, 57, 5677-5680.	0.7	31
72	Copper-Catalyzed Regioselective 1,2-Alkylesterification of Dienes to Allylic Esters. Organic Letters, 2016, 18, 392-395.	2.4	64

#	Article	IF	CITATIONS
73	Regioselective and diastereoselective aminoarylation of 1,3-dienes. Chemical Science, 2014, 5, 4863-4867.	3.7	22
74	Enantioselective Ring Opening of <i>meso</i> poxides with Aromatic Amines Catalyzed by Dinuclear Magnesium Complexes. Chinese Journal of Chemistry, 2013, 31, 67-71.	2.6	20
75	Catalytic Enantioselective Allylic Amination of Olefins for the Synthesis of Âent-Sitagliptin. Synlett, 2013, 24, 2459-2463.	1.0	14
76	Catalytic Enantioselective Allylic Amination of Unactivated Terminal Olefins via an Ene Reaction/[2,3]-Rearrangement. Journal of the American Chemical Society, 2012, 134, 18495-18498.	6.6	82
77	Catalytic Enantioselective [2,3]-Rearrangements of Amine <i>N</i> -Oxides. Journal of the American Chemical Society, 2011, 133, 1206-1208.	6.6	51
78	Enantioselective Ring Opening Reaction of <i>meso</i> poxides with Aromatic and Aliphatic Amines Catalyzed by Magnesium Complexes of BINOL Derivatives. European Journal of Organic Chemistry, 2010, 2010, 6722-6726.	1.2	58
79	BINOLate–Magnesium Catalysts for Enantioselective Heteroâ€Diels–Alder Reaction of Danishefsky's Diene with Aldehydes. European Journal of Organic Chemistry, 2008, 2008, 2248-2254.	1.2	65
80	Rhodol-based fluorescent probes used for fast response toward ClO- and delayed determination of H2O2 in living cells. Synthesis, 0, 0, .	1.2	0
81	Palladium-catalyzed three-component 1,4-carboarylation of 1,3-enynes with malonic esters and aryl iodides. Synthesis, 0, 0, .	1.2	2
82	Radical Oxyazidation of Alkenes in Pure Water. Synthesis, 0, 0, .	1.2	0
83	Copperâ€catalyzed radical enantioselective carboâ€esterification of styrenes enabled by a perfluoroalkylatedâ€PyBox ligand. Angewandte Chemie, 0, , .	1.6	Ο