Thangaian Kesavan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7674487/publications.pdf

Version: 2024-02-01

1162889 1058333 15 461 8 14 citations g-index h-index papers 15 15 15 834 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	On the large capacitance of nitrogen doped graphene derived by a facile route. RSC Advances, 2014, 4, 38689-38697.	1.7	148
2	Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor. Microporous and Mesoporous Materials, 2019, 274, 236-244.	2.2	70
3	Nitrogen Rich Carbon Coated TiO2 Nanoparticles as Anode for High Performance Lithium-ion Battery. Electrochimica Acta, 2017, 255, 417-427.	2.6	56
4	Design of P-Doped Mesoporous Carbon Nitrides as High-Performance Anode Materials for Li-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24007-24018.	4.0	44
5	An efficient palm waste derived hierarchical porous carbon for electrocatalytic hydrogen evolution reaction. Carbon, 2019, 152, 188-197.	5.4	41
6	Palm Spathe Derived N-Doped Carbon Nanosheets as a High Performance Electrode for Li-Ion Batteries and Supercapacitors. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	19
7	N-rich graphitic carbon nitride functionalized graphene oxide nanosheet hybrid as anode for high performance lithium-ion batteries. Materials Research Express, 2018, 5, 016307.	0.8	18
8	Nitrogen-Doped Graphene as Electrode Material with Enhanced Energy Density for Next-Generation Supercapacitor Application. ECS Journal of Solid State Science and Technology, 2015, 4, M88-M92.	0.9	15
9	Improved supercapacitor performance based on sustainable synthesis using chemically activated porous carbon. Journal of Alloys and Compounds, 2022, 906, 164287.	2.8	12
10	Self-assembled mesoporous Nb ₂ O ₅ as a high performance anode material for rechargeable lithium ion batteries. Materials Research Express, 2019, 6, 035502.	0.8	8
11	Melamine-templated TiO2 nanoparticles as anode with high capacity and cycling stability for lithium-ion batteries. Journal of Solid State Electrochemistry, 2021, 25, 919-926.	1.2	8
12	Fabrication of Hollow Co ₃ O ₄ Nanospheres and Their Nanocomposites of CNT and rGO as Highâ€Performance Anodes for Lithiumâ€lon Batteries. ChemistrySelect, 2018, 3, 5502-5511.	0.7	7
13	<i>Operando</i> Structural and Electrochemical Investigation of Li _{1.5} V ₃ O ₈ Nanorods in Li-ion Batteries. ACS Applied Energy Materials, 2019, 2, 852-859.	2.5	7
14	N-Doped Carbon Nanosheets from Biomass for Ultra Long-Cycling and High Energy Density Symmetric Supercapacitors. ECS Journal of Solid State Science and Technology, 2021, 10, 051004.	0.9	4
15	Enhanced electrocatalytic activity of <i>in situ</i> carbon encapsulated molybdenum phosphide derived from a hybrid POM for the HER over a wide pH range. Sustainable Energy and Fuels, 2022, 6, 289-298.	2.5	4