Shagufta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7673704/publications.pdf

Version: 2024-02-01

		430442	500791
28	1,275	18	28
papers	citations	h-index	g-index
28	28	28	1939
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. European Journal of Medicinal Chemistry, 2018, 143, 515-531.	2.6	175
2	Recent insight into the biological activities of synthetic xanthone derivatives. European Journal of Medicinal Chemistry, 2016, 116 , 267 - 280 .	2.6	132
3	An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. MedChemComm, 2017, 8, 871-885.	3.5	128
4	Substituted phenanthrenes with basic amino side chains: A new series of anti-breast cancer agents. Bioorganic and Medicinal Chemistry, 2006, 14, 1497-1505.	1.4	100
5	Recent developments in steroidal and nonsteroidal aromatase inhibitors for the chemoprevention of estrogen-dependent breast cancer. European Journal of Medicinal Chemistry, 2015, 102, 375-386.	2.6	89
6	Prospective Validation of a Comprehensive In silico hERG Model and its Applications to Commercial Compound and Drug Databases. ChemMedChem, 2010, 5, 716-729.	1.6	87
7	Effect of substituents on diarylmethanes for antitubercular activity. European Journal of Medicinal Chemistry, 2007, 42, 410-419.	2.6	68
8	Diaryloxy methano phenanthrenes: a new class of antituberculosis agents. Bioorganic and Medicinal Chemistry, 2004, 12, 5269-5276.	1.4	59
9	An easy access to unsymmetric trisubstituted methane derivatives (TRSMs). Tetrahedron Letters, 2005, 46, 3097-3102.	0.7	46
10	Sulfonic Acid-Functionalized Solid Acid Catalyst in Esterification and Transesterification Reactions. Catalysis Surveys From Asia, 2017, 21, 53-69.	1.0	46
11	CoMFA and CoMSIA 3D-QSAR analysis of diaryloxy-methano-phenanthrene derivatives as anti-tubercular agents. Journal of Molecular Modeling, 2007, 13, 99-109.	0.8	43
12	Recent progress in selective estrogen receptor downregulators (SERDs) for the treatment of breast cancer. RSC Medicinal Chemistry, 2020, 11, 438-454.	1.7	39
13	The race to treat COVID-19: Potential therapeutic agents for the prevention and treatment of SARS-CoV-2. European Journal of Medicinal Chemistry, 2021, 213, 113157.	2.6	35
14	Synthesis and antitubercular activity of 2-hydroxy-aminoalkyl derivatives of diaryloxy methano phenanthrenes. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5222-5225.	1.0	27
15	Exploring Chemical Substructures Essential for hERG K ⁺ Channel Blockade by Synthesis and Biological Evaluation of Dofetilide Analogues. ChemMedChem, 2009, 4, 1722-1732.	1.6	27
16	A new example of a steroid–amino acid hybrid: construction of constrained nine memberedd-ring steroids. Organic and Biomolecular Chemistry, 2007, 5, 360-366.	1.5	25
17	Synthetic approach towards trisubstituted methanes and a chiral tertiary α-hydroxyaldehyde, a possible intermediate for tetrasubstituted methanes. RSC Advances, 2013, 3, 12100.	1.7	21
18	Transition metal complexes as proteasome inhibitors for cancer treatment. Inorganica Chimica Acta, 2020, 506, 119521.	1.2	21

SHAGUFTA

#	Article	lF	CITATION
19	Quest for steroidomimetics: Amino acids derived steroidal and nonsteroidal architectures. European Journal of Medicinal Chemistry, 2017, 133, 139-151.	2.6	18
20	Advances in asymmetric oxidative kinetic resolution of racemic secondary alcohols catalyzed by chiral Mn(III) salen complexes. Chirality, 2017, 29, 798-810.	1.3	15
21	Convenient phosphorus tribromide induced syntheses of substituted 1-arylmethylnaphthalenes from 1-tetralone derivatives. Tetrahedron Letters, 2005, 46, 5337-5341.	0.7	14
22	Characterization of a tamoxifen-tethered single-walled carbon nanotube conjugate by using NMR spectroscopy. Analytical and Bioanalytical Chemistry, 2012, 404, 771-776.	1.9	12
23	Isomerization of allylic alcohols into saturated carbonyls using phosphorus tribromide. Tetrahedron Letters, 2006, 47, 1065-1070.	0.7	10
24	An unexpected reaction of phosphorous tribromide on chromanone, thiochromanone, 3,4-dihydro-2H-benzo[b]thiepin-5-one, 3,4-dihydro-2H-benzo[b]oxepin-5-one and tetralone derived allylic alcohols: a case study. Tetrahedron, 2008, 64, 9962-9976.	1.0	10
25	A new strategy for the synthesis of aryl- and heteroaryl-substituted exocyclic olefins from allyl alcohols using PBr3. Tetrahedron Letters, 2005, 46, 8849-8852.	0.7	8
26	An Update on Pharmacological Relevance and Chemical Synthesis of Natural Products and Derivatives with Anti SARS oVâ€2 Activity. ChemistrySelect, 2021, 6, 11502-11527.	0.7	8
27	Regiochemical Reversals in Nitrosobenzene Reactions with Carbonyl Compounds – αâ€Aminooxy Ketone versus αâ€Hydroxyamino Ketone Products. European Journal of Organic Chemistry, 2012, 2012, 6013-6020.	1.2	6
28	An Environmentally Benign Solid Acid Nanocatalyst for the Green Synthesis of Carboxylic Acid Ester. ChemistrySelect, 2021, 6, 9645-9652.	0.7	6