
Sandro Grelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7673485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First Case of a COVID-19 Patient Infected by Delta AY.4 with a Rare Deletion Leading to a N Gene Target Failure by a Specific Real Time PCR Assay: Novel Omicron VOC Might Be Doing Similar Scenario?. Microorganisms, 2022, 10, 268.	1.6	12
2	Reduced Titers of Circulating Anti-SARS-CoV-2 Antibodies and Risk of COVID-19 Infection in Healthcare Workers during the Nine Months after Immunization with the BNT162b2 mRNA Vaccine. Vaccines, 2022, 10, 141.	2.1	33
3	Thymosin Alpha 1 Mitigates Cytokine Storm in Blood Cells From Coronavirus Disease 2019 Patients. Open Forum Infectious Diseases, 2021, 8, ofaa588.	0.4	27
4	Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death and Disease, 2021, 12, 310.	2.7	33
5	Evidence of the pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients. EBioMedicine, 2021, 66, 103341.	2.7	57
6	HBeAg Levels Vary across the Different Stages of HBV Infection According to the Extent of Immunological Pressure and Are Associated with Therapeutic Outcome in the Setting of Immunosuppression-Driven HBV Reactivation. Biomedicines, 2021, 9, 1352.	1.4	1
7	Retinoids in Fungal Infections: From Bench to Bedside. Pharmaceuticals, 2021, 14, 962.	1.7	25
8	Post-Mortem RT-PCR Assay for SARS-CoV-2 RNA in COVID-19 Patients' Corneal Epithelium, Conjunctival and Nasopharyngeal Swabs. Journal of Clinical Medicine, 2021, 10, 4256.	1.0	11
9	High CD169 Monocyte/Lymphocyte Ratio Reflects Immunophenotype Disruption and Oxygen Need in COVID-19 Patients. Pathogens, 2021, 10, 1639.	1.2	7
10	Skin immunity and its dysregulation in atopic dermatitis, hidradenitis suppurativa and vitiligo. Cell Cycle, 2020, 19, 257-267.	1.3	22
11	Expression profiles of the SARS-CoV-2 host invasion genes in nasopharyngeal and oropharyngeal swabs of COVID-19 patients. Heliyon, 2020, 6, e05143.	1.4	23
12	Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2-positive patients. Human Genomics, 2020, 14, 29.	1.4	60
13	Appraisal of a Simple and Effective RT-qPCR Assay for Evaluating the Reverse Transcriptase Activity in Blood Samples from HIV-1 Patients. Pathogens, 2020, 9, 1047.	1.2	3
14	Antiretroviral Therapy in HTLV-1 Infection: An Updated Overview. Pathogens, 2020, 9, 342.	1.2	26
15	Effect of microvesicles from Moringa oleifera containing miRNA on proliferation and apoptosis in tumor cell lines. Cell Death Discovery, 2020, 6, 43.	2.0	43
16	Inhibition of lκBα phosphorylation potentiates regulated cell death induced by azidothymidine in HTLV-1 infected cells. Cell Death Discovery, 2020, 6, 9.	2.0	3
17	Tuberculosis-Related Hospitalizations in a Low-Incidence Country: A Retrospective Analysis in Two Italian Infectious Diseases Wards. International Journal of Environmental Research and Public Health, 2020, 17, 124.	1.2	3
18	Key mutations in the C-terminus of the HBV surface glycoprotein correlate with lower HBsAg levels <i>in vivo</i> , hinder HBsAg secretion <i>in vitro</i> and reduce HBsAg structural stability in the setting of HBeAg-negative chronic HBV genotype-D infection. Emerging Microbes and Infections, 2020, 9, 928-939.	3.0	5

SANDRO GRELLI

#	Article	IF	CITATIONS
19	Plant microRNAs from Moringa oleifera Regulate Immune Response and HIV Infection. Frontiers in Pharmacology, 2020, 11, 620038.	1.6	14
20	Cytotoxic and apoptotic effects of different extracts of Moringa�oleifera Lam on lymphoid and monocytoid cells. Experimental and Therapeutic Medicine, 2019, 18, 5-17.	0.8	19
21	The Concomitant Expression of Human Endogenous Retroviruses and Embryonic Genes in Cancer Cells under Microenvironmental Changes is a Potential Target for Antiretroviral Drugs. Cancer Microenvironment, 2019, 12, 105-118.	3.1	9
22	Children With Autism Spectrum Disorder and Their Mothers Share Abnormal Expression of Selected Endogenous Retroviruses Families and Cytokines. Frontiers in Immunology, 2019, 10, 2244.	2.2	32
23	NF-κB-Dependent Production of ROS and Restriction of HSV-1 Infection in U937 Monocytic Cells. Viruses, 2019, 11, 428.	1.5	16
24	NaÃ ⁻ ve/Effector CD4 T cell ratio as a useful predictive marker of immune reconstitution in late presenter HIV patients: A multicenter study. PLoS ONE, 2019, 14, e0225415.	1.1	15
25	Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. International Journal of Molecular Sciences, 2019, 20, 6050.	1.8	18
26	Cell death pathologies: targeting death pathways and the immune system for cancer therapy. Genes and Immunity, 2019, 20, 539-554.	2.2	39
27	High expression of Endogenous Retroviruses from intrauterine life to adulthood in two mouse models of Autism Spectrum Disorders. Scientific Reports, 2018, 8, 629.	1.6	24
28	p73 Regulates Primary Cortical Neuron Metabolism: a Global Metabolic Profile. Molecular Neurobiology, 2018, 55, 3237-3250.	1.9	9
29	The Decrease in Human Endogenous Retrovirus-H Activity Runs in Parallel with Improvement in ADHD Symptoms in Patients Undergoing Methylphenidate Therapy. International Journal of Molecular Sciences, 2018, 19, 3286.	1.8	13
30	Focus on recently developed assays for detection of resistance/sensitivity to reverse transcriptase inhibitors. Applied Microbiology and Biotechnology, 2018, 102, 9925-9936.	1.7	3
31	Deciphering cellular biological processes to clinical application: a new perspective for Tα1 treatment targeting multiple diseases. Expert Opinion on Biological Therapy, 2018, 18, 23-31.	1.4	11
32	Future Perspectives on Drug Targeting in Adult T Cell Leukemia-Lymphoma. Frontiers in Microbiology, 2018, 9, 925.	1.5	10
33	Thymosin alpha 1 and HIV-1: recent advances and future perspectives. Future Microbiology, 2017, 12, 141-155.	1.0	37
34	Quantification of HTLV-1 reverse transcriptase activity in ATL patients treated with zidovudine and interferon-α. Blood Advances, 2017, 1, 748-752.	2.5	23
35	Testing antiâ€HIV activity of antiretroviral agents in vitro using flow cytometry analysis of CEMâ€GFP cells infected with transfectionâ€derived HIVâ€∃ NL4â€3. Journal of Medical Virology, 2016, 88, 979-986.	2.5	5
36	HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis. Cell Death and Disease, 2016, 7, e2354-e2354.	2.7	23

SANDRO GRELLI

#	Article	IF	CITATIONS
37	Characterization of the enhanced apoptotic response to azidothymidine by pharmacological inhibition of NF-kB. Life Sciences, 2015, 127, 90-97.	2.0	16
38	Thymosin \hat{I}_{\pm} 1 potentiates the release by CD8+cells of soluble factors able to inhibit HIV-1 and human T lymphotropic virus 1 infectionin vitro. Expert Opinion on Biological Therapy, 2015, 15, 83-100.	1.4	12
39	Approaches towards the synthesis of 7-halo-1,2-dihydroxyindolizidines (7-halolentiginosines) thwarting Grob fragmentation processes. Tetrahedron, 2015, 71, 5806-5813.	1.0	5
40	Role of inflammation and apoptosis in multiple sclerosis: Comparative analysis between the periphery and the central nervous system. Journal of Neuroimmunology, 2015, 287, 80-87.	1.1	41
41	Lymphocytes as Liver Damage Mirror of HCV Related Adipogenesis Deregulation. PLoS ONE, 2014, 9, e92343.	1.1	8
42	(â^')â€(1 <i>R</i> ,2 <i>R</i> ,7 <i>S,</i> 8a <i>R</i>)â€1,2,7â€Trihydroxyindolizidine ((â^')â€7 <i>S</i> â€OHâ€Lentig Synthesis and Proapoptotic Activity. ChemPlusChem, 2012, 77, 224-233.	ginosine): 1.3	15
43	Satraplatin (JM-216) mediates G2/M cell cycle arrest and potentiates apoptosis via multiple death pathways in colorectal cancer cells thus overcoming platinum chemo-resistance. Cancer Chemotherapy and Pharmacology, 2011, 67, 1299-1312.	1.1	25
44	Platinum-(IV)-derivative satraplatin induced G2/M cell cycle perturbation via p53-p21waf1/cip1-independent pathway in human colorectal cancer cells. Acta Pharmacologica Sinica, 2011, 32, 1387-1396.	2.8	15
45	The novel proapoptotic activity of nonnatural enantiomer of Lentiginosine. Glycobiology, 2010, 20, 500-506.	1.3	44
46	Effector caspase activation, in the absence of a conspicuous apoptosis induction, in mononuclear cells treated with azidothymidine. Pharmacological Research, 2009, 59, 125-133.	3.1	9
47	Involvement of HVEM receptor in activation of nuclear factor κB by herpes simplex virus 1 glycoprotein D. Cellular Microbiology, 2008, 10, 2297-2311.	1.1	43
48	Involvement of gD/HVEM interaction in NF-kB-dependent inhibition of apoptosis by HSV-1 gD. Biochemical Pharmacology, 2008, 76, 1522-1532.	2.0	35
49	Apoptosis-associated gene expression in HIV-infected patients in response to successful antiretroviral therapy. Journal of Medical Virology, 2007, 79, 111-117.	2.5	15
50	Signaling Pathway Used by HSV-1 to Induce NF-ÂB Activation: Possible Role of Herpes Virus Entry Receptor A. Annals of the New York Academy of Sciences, 2007, 1096, 89-96.	1.8	23
51	Apoptotic Cell Signaling in Lymphocytes from HIV+ Patients during Successful Therapy. Annals of the New York Academy of Sciences, 2006, 1090, 130-137.	1.8	4
52	Role of Bcl-2 expression for productive herpes simplex virus 2 replication. Virology, 2006, 356, 136-146.	1.1	16
53	In Vivo and In Vitro Studies Support That a New Splicing Isoform of OLR1 Gene Is Protective Against Acute Myocardial Infarction. Circulation Research, 2005, 97, 152-158.	2.0	116
54	Antitumour effect of OM-174 and Cyclophosphamide on murine B16 melanoma in different experimental conditions. International Immunopharmacology, 2005, 5, 1205-1212.	1.7	54

SANDRO GRELLI

#	Article	IF	CITATIONS
55	Inverse correlation between CD8+ lymphocyte apoptosis and CD4+ cell counts during potent antiretroviral therapy in HIV patients. Journal of Antimicrobial Chemotherapy, 2004, 53, 494-500.	1.3	9
56	Increased caspase activation in peripheral blood mononuclear cells of patients with Alzheimer's disease. Experimental Neurology, 2004, 190, 254-262.	2.0	40
57	CD4+Lymphocyte Increases in HIV Patients during Potent Antiretroviral Therapy Are Dependent on Inhibition of CD8+Cell Apoptosis. Annals of the New York Academy of Sciences, 2003, 1010, 560-564.	1.8	3
58	Efficacy of 3â€2-azido 3â€2deoxythymidine (AZT) in preventing HTLV-1 transmission to human cord blood mononuclear cells. Virus Research, 2001, 78, 67-78.	1.1	21
59	Changes in apoptosis after interruption of potent antiretroviral therapy in patients with maximal HIV-1-RNA suppression. Aids, 2001, 15, 1178-1181.	1.0	3
60	Spontaneous and anti-Fas-induced apoptosis in lymphocytes from HIV-infected patients undergoing highly active anti-retroviral therapy. Aids, 2000, 14, 939-949.	1.0	23
61	Thymosin-α1 regulates MHC class I expression in FRTL-5 cells at transcriptional level. European Journal of Immunology, 2000, 30, 778-786.	1.6	85
62	Thymosin-α1 regulates MHC class I expression in FRTL-5 cells at transcriptional level. European Journal of Immunology, 2000, 30, 778-786.	1.6	10
63	Identification of nuclei from apoptotic, necrotic, and viable lymphoid cells by using multiparameter flow cytometry. , 1999, 35, 145-153.		58
64	Herpes simplex virus 2 causes apoptotic infection in monocytoid cells. Cell Death and Differentiation, 1997, 4, 629-638.	5.0	43
65	Leucocyte Rheological Properties Are Altered in Patients with Diffuse Atherosclerosis. Thrombosis and Haemostasis, 1997, 77, 1073-1076.	1.8	11
66	Recombinant Interferon α2a, Thymopentin and Low Doses of Cytosine Arabinoside for the Treatment of Myelodysplastic Syndromes: A Pilot Study. Leukemia and Lymphoma, 1995, 16, 335-342.	0.6	7
67	Combination treatment with zidovudine, thymosin α1 and interferon-α in human immunodeficiency virus infectionand interferon-α in human immunodeficiency virus infection. International Journal of Clinical and Laboratory Research, 1994, 24, 23-28.	1.0	39
68	Correlation between Induction of Lymphocyte Apoptosis and Prostaglandin E2 Production by Macrophages Infected with HIV. Cellular Immunology, 1993, 152, 120-130.	1.4	65
69	Combined Therapy with Zidovudine, Thymosin $\hat{I}\pm 1$ and $\hat{I}\pm$ -Interferon in the Treatment of HIV-Infected Patients. , 1993, , 235-242.		1
70	Combination therapy with thymosin $\hat{l}\pm 1$ potentiates the anti-tumor activity of interleukin-2 with cyclophosphamide in the treatment of the lewis lung carcinoma in mice. International Journal of Cancer, 1992, 50, 493-499.	2.3	48
71	Rationale for Therapeutic Approaches with Thymosin $\hat{I}\pm1$, Interleukin 2 and Interferon in Combination with Chemotherapy. , 1992, , 275-281.		4
72	Thymosin α 1 potentiates interleukin 2-induced cytotoxic activity in mice. Cellular Immunology, 1991, 133, 196-205.	1.4	24

#	Article	IF	CITATIONS
73	Synergistic effect of thymosin α1 and αβ-interferon on NK activity in tumor-bearing mice. International Journal of Immunopharmacology, 1989, 11, 443-450.	1.1	54