Zhang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/767340/publications.pdf

Version: 2024-02-01

		66343	40979
101	10,002	42	93
papers	citations	h-index	g-index
111	111	111	15144
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gene Expression Nebulas (GEN): a comprehensive data portal integrating transcriptomic profiles across multiple species at both bulk and single-cell levels. Nucleic Acids Research, 2022, 50, D1016-D1024.	14.5	18
2	LIRBase: a comprehensive database of long inverted repeats in eukaryotic genomes. Nucleic Acids Research, 2022, 50, D174-D182.	14.5	1
3	CompoDynamics: a comprehensive database for characterizing sequence composition dynamics. Nucleic Acids Research, 2022, 50, D962-D969.	14.5	6
4	LncRNAWiki 2.0: a knowledgebase of human long non-coding RNAs with enhanced curation model and database system. Nucleic Acids Research, 2022, 50, D190-D195.	14.5	16
5	BrainBase: a curated knowledgebase for brain diseases. Nucleic Acids Research, 2022, 50, D1131-D1138.	14.5	11
6	EWAS Open Platform: integrated data, knowledge and toolkit for epigenome-wide association study. Nucleic Acids Research, 2022, 50, D1004-D1009.	14.5	57
7	KaKs_Calculator 3.0: Calculating Selective Pressure on Coding and Non-Coding Sequences. Genomics, Proteomics and Bioinformatics, 2022, 20, 536-540.	6.9	106
8	RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Research, 2021, 49, D212-D220.	14.5	160
9	LncExpDB: an expression database of human long non-coding RNAs. Nucleic Acids Research, 2021, 49, D962-D968.	14.5	55
10	DatabaseÂResources of the National Genomics Data Center, China National Center for Bioinformation in 2021. Nucleic Acids Research, 2021, 49, D18-D28.	14.5	168
11	Genome Warehouse: A Public Repository Housing Genome-scale Data. Genomics, Proteomics and Bioinformatics, 2021, 19, 584-589.	6.9	104
12	The Genome Sequence Archive Family: Toward Explosive Data Growth and Diverse Data Types. Genomics, Proteomics and Bioinformatics, 2021, 19, 578-583.	6.9	504
13	Genome Variation Map: a worldwide collection of genome variations across multiple species. Nucleic Acids Research, 2021, 49, D1186-D1191.	14.5	40
14	Database Resources of the National Genomics Data Center in 2020. Nucleic Acids Research, 2020, 48, D24-D33.	14.5	165
15	GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Research, 2020, 48, D927-D932.	14.5	112
16	EWAS Data Hub: a resource of DNA methylation array data and metadata. Nucleic Acids Research, 2020, 48, D890-D895.	14.5	57
17	LSD 3.0: a comprehensive resource for the leaf senescence research community. Nucleic Acids Research, 2020, 48, D1069-D1075.	14.5	57
18	IC4R-2.0: Rice Genome Reannotation Using Massive RNA-seq Data. Genomics, Proteomics and Bioinformatics, 2020, 18, 161-172.	6.9	18

#	Article	IF	Citations
19	Protist 10,000 Genomes Project. Innovation(China), 2020, 1, 100058.	9.1	14
20	Computational identification and characterization of glioma candidate biomarkers through multi-omics integrative profiling. Biology Direct, 2020, 15, 10.	4.6	22
21	The Elements of Data Sharing. Genomics, Proteomics and Bioinformatics, 2020, 18, 1-4.	6.9	13
22	SR4R: An Integrative SNP Resource for Genomic Breeding and Population Research in Rice. Genomics, Proteomics and Bioinformatics, 2020, 18, 173-185.	6.9	18
23	The Global Landscape of SARS-CoV-2 Genomes, Variants, and Haplotypes in 2019nCoVR. Genomics, Proteomics and Bioinformatics, 2020, 18, 749-759.	6.9	88
24	Compositional Variability and Mutation Spectra of Monophyletic SARS-CoV-2 Clades. Genomics, Proteomics and Bioinformatics, 2020, 18, 648-663.	6.9	8
25	Multi-omics annotation of human long non-coding RNAs. Biochemical Society Transactions, 2020, 48, 1545-1556.	3.4	6
26	The 2019 novel coronavirus resource. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2020, 42, 212-221.	0.2	152
27	An online coronavirus analysis platform from the National Genomics Data Center. Zoological Research, 2020, 41, 705-708.	2.1	62
28	Community Curation and Expert Curation of Human Long Noncoding RNAs with LncRNAWiki and LncBook. Current Protocols in Bioinformatics, 2019, 67, e82.	25.8	6
29	Database Resources in BIG Data Center: Submission, Archiving, and Integration of Big Data in Plant Science. Molecular Plant, 2019, 12, 279-281.	8.3	6
30	Computational determination of gene age and characterization of evolutionary dynamics in human. Briefings in Bioinformatics, 2019, 20, 2141-2149.	6.5	1
31	RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Research, 2019, 47, D221-D229.	14.5	153
32	Characterization and identification of long non-coding RNAs based on feature relationship. Bioinformatics, 2019, 35, 2949-2956.	4.1	64
33	NucMap: a database of genome-wide nucleosome positioning map across species. Nucleic Acids Research, 2019, 47, D163-D169.	14.5	27
34	EWAS Atlas: a curated knowledgebase of epigenome-wide association studies. Nucleic Acids Research, 2019, 47, D983-D988.	14.5	193
35	Plant editosome database: a curated database of RNA editosome in plants. Nucleic Acids Research, 2019, 47, D170-D174.	14.5	38
36	iDog: an integrated resource for domestic dogs and wild canids. Nucleic Acids Research, 2019, 47, D793-D800.	14.5	33

#	Article	IF	CITATIONS
37	Editome Disease Knowledgebase (EDK): a curated knowledgebase of editome-disease associations in human. Nucleic Acids Research, 2019, 47, D78-D83.	14.5	28
38	LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Research, 2019, 47, D128-D134.	14.5	177
39	Genome Variation Map: a data repository of genome variations in BIG Data Center. Nucleic Acids Research, 2018, 46, D944-D949.	14.5	53
40	MethBank 3.0: a database of DNA methylomes across a variety of species. Nucleic Acids Research, 2018, 46, D288-D295.	14.5	50
41	ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization. Nucleic Acids Research, 2018, 46, D121-D126.	14.5	49
42	Rice Genomics: over the Past Two Decades and into the Future. Genomics, Proteomics and Bioinformatics, 2018, 16, 397-404.	6.9	46
43	Database Resources of the BIG Data Center in 2018. Nucleic Acids Research, 2018, 46, D14-D20.	14.5	128
44	Bioinformatics Commons: The Cornerstone of Life and Health Sciences. Genomics, Proteomics and Bioinformatics, 2018, 16, 223-225.	6.9	2
45	CloudPhylo: a fast and scalable tool for phylogeny reconstruction. Bioinformatics, 2017, 33, 438-440.	4.1	7
46	Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice. Journal of Genetics and Genomics, 2017, 44, 235-241.	3.9	114
47	GSA: Genome Sequence Archive *. Genomics, Proteomics and Bioinformatics, 2017, 15, 14-18.	6.9	563
48	DES-ncRNA: A knowledgebase for exploring information about human micro and long noncoding RNAs based on literature-mining. RNA Biology, 2017, 14, 963-971.	3.1	21
49	Detection of Regional Variation in Selection Intensity within Protein-Coding Genes Using DNA Sequence Polymorphism and Divergence. Molecular Biology and Evolution, 2017, 34, 3006-3022.	8.9	10
50	RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Research, 2017, 45, D128-D134.	14.5	174
51	Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level. Frontiers in Microbiology, 2016, 7, 998.	3.5	62
52	Pangenome Evidence for Higher Codon Usage Bias and Stronger Translational Selection in Core Genes of Escherichia coli. Frontiers in Microbiology, 2016, 7, 1180.	3.5	18
53	Randomness in Sequence Evolution Increases over Time. PLoS ONE, 2016, 11, e0155935.	2.5	9
54	Transcriptome analyses provide insights into the phylogeny and adaptive evolution of the mangrove fern genus Acrostichum. Scientific Reports, 2016, 6, 35634.	3.3	25

#	Article	lF	CITATIONS
55	What Signatures Dominantly Associate with Gene Age?. Genome Biology and Evolution, 2016, 8, 3083-3089.	2.5	39
56	Precision Medicine: What Challenges Are We Facing?. Genomics, Proteomics and Bioinformatics, 2016, 14, 253-261.	6.9	15
57	Old genes experience stronger translational selection than young genes. Gene, 2016, 590, 29-34.	2.2	11
58	Information Commons for Rice (IC4R). Nucleic Acids Research, 2016, 44, D1172-D1180.	14.5	41
59	De Novo Assembly of Coding Sequences of the Mangrove Palm (Nypa fruticans) Using RNA-Seq and Discovery of Whole-Genome Duplications in the Ancestor of Palms. PLoS ONE, 2015, 10, e0145385.	2.5	27
60	MethBank: a database integrating next-generation sequencing single-base-resolution DNA methylation programming data. Nucleic Acids Research, 2015, 43, D54-D58.	14.5	31
61	LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs. Nucleic Acids Research, 2015, 43, D187-D192.	14.5	110
62	DoGSD: the dog and wolf genome SNP database. Nucleic Acids Research, 2015, 43, D777-D783.	14.5	76
63	Biological Databases for Human Research. Genomics, Proteomics and Bioinformatics, 2015, 13, 55-63.	6.9	84
64	Transcriptome analysis of the Holly mangrove Acanthus ilicifolius and its terrestrial relative, Acanthus leucostachyus, provides insights into adaptation to intertidal zones. BMC Genomics, 2015, 16, 605.	2.8	46
65	PanGP: A tool for quickly analyzing bacterial pan-genome profile. Bioinformatics, 2014, 30, 1297-1299.	4.1	188
66	Bringing Biocuration to China. Genomics, Proteomics and Bioinformatics, 2014, 12, 153-155.	6.9	8
67	RiceWiki: a wiki-based database for community curation of rice genes. Nucleic Acids Research, 2014, 42, D1222-D1228.	14.5	19
68	Flexibility and Symmetry of Prokaryotic Genome Rearrangement Reveal Lineage-Associated Core-Gene-Defined Genome Organizational Frameworks. MBio, 2014, 5, e01867.	4.1	22
69	Ribogenomics: the Science and Knowledge of RNA. Genomics, Proteomics and Bioinformatics, 2014, 12, 57-63.	6.9	38
70	Evaluation of Five Methods for Genome-Wide Circadian Gene Identification. Journal of Biological Rhythms, 2014, 29, 231-242.	2.6	41
71	The quest for a unified view of bacterial land colonization. ISME Journal, 2014, 8, 1358-1369.	9.8	21
72	Translational selection in human: more pronounced in housekeeping genes. Biology Direct, 2014, 9, 17.	4.6	45

#	Article	IF	Citations
73	Does the Genetic Code Have A Eukaryotic Origin?. Genomics, Proteomics and Bioinformatics, 2013, 11, 41-55.	6.9	2
74	On the classification of long non-coding RNAs. RNA Biology, 2013, 10, 924-933.	3.1	1,040
75	Systematic analysis of intron size and abundance parameters in diverse lineages. Science China Life Sciences, 2013, 56, 968-974.	4.9	43
76	AuthorReward: increasing community curation in biological knowledge wikis through automated authorship quantification. Bioinformatics, 2013, 29, 1837-1839.	4.1	10
77	Community Intelligence in Knowledge Curation: An Application to Managing Scientific Nomenclature. PLoS ONE, 2013, 8, e56961.	2.5	7
78	Distinct Contributions of Replication and Transcription to Mutation Rate Variation of Human Genomes. Genomics, Proteomics and Bioinformatics, 2012, 10, 4-10.	6.9	31
79	ParaAT: A parallel tool for constructing multiple protein-coding DNA alignments. Biochemical and Biophysical Research Communications, 2012, 419, 779-781.	2.1	377
80	Codon Deviation Coefficient: a novel measure for estimating codon usage bias and its statistical significance. BMC Bioinformatics, 2012, 13, 43.	2.6	53
81	Bioinformatics clouds for big data manipulation. Biology Direct, 2012, 7, 43; discussion 43.	4.6	121
82	Comparative Analyses of H3K4 and H3K27 Trimethylations Between the Mouse Cerebrum and Testis. Genomics, Proteomics and Bioinformatics, 2012, 10, 82-93.	6.9	22
83	Strand-biased Gene Distribution in Bacteria Is Related to both Horizontal Gene Transfer and Strand-biased Nucleotide Composition. Genomics, Proteomics and Bioinformatics, 2012, 10, 186-196.	6.9	11
84	The Pendulum Model for Genome Compositional Dynamics: from the Four Nucleotides to the Twenty Amino Acids. Genomics, Proteomics and Bioinformatics, 2012, 10, 175-180.	6.9	8
85	On the molecular mechanism of GC content variation among eubacterial genomes. Biology Direct, 2012, 7, 2.	4.6	121
86	On the Organizational Dynamics of the Genetic Code. Genomics, Proteomics and Bioinformatics, 2011, 9, 21-29.	6.9	20
87	LOX: inferring Level Of eXpression from diverse methods of census sequencing. Bioinformatics, 2010, 26, 1918-1919.	4.1	30
88	Modeling compositional dynamics based on GC and purine contents of protein-coding sequences. Biology Direct, 2010, 5, 63.	4.6	13
89	The filamentous fungal gene expression database (FFGED). Fungal Genetics and Biology, 2010, 47, 199-204.	2.1	32
90	Nucleotide compositional asymmetry between the leading and lagging strands of eubacterial genomes. Research in Microbiology, 2010, 161, 838-846.	2.1	19

#	Article	IF	CITATIONS
91	KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genomics, Proteomics and Bioinformatics, 2010, 8, 77-80.	6.9	1,301
92	Maximum-Likelihood Model Averaging To Profile Clustering of Site Types across Discrete Linear Sequences. PLoS Computational Biology, 2009, 5, e1000421.	3.2	17
93	Correlation Between Ka/Ks and Ks is Related to Substitution Model and Evolutionary Lineage. Journal of Molecular Evolution, 2009, 68, 414-423.	1.8	71
94	Bringing Web 2.0 to bioinformatics. Briefings in Bioinformatics, 2008, 10, 1-10.	6.5	66
95	Compositional dynamics of guanine and cytosine content in prokaryotic genomes. Research in Microbiology, 2007, 158, 363-370.	2.1	31
96	GC content variability of eubacteria is governed by the pol III \hat{l}_{\pm} subunit. Biochemical and Biophysical Research Communications, 2007, 356, 20-25.	2.1	40
97	Evaluation of Six Methods for Estimating Synonymous and Nonsynonymous Substitution Rates. Genomics, Proteomics and Bioinformatics, 2006, 4, 173-181.	6.9	34
98	KaKs_Calculator: Calculating Ka and Ks Through Model Selection and Model Averaging. Genomics, Proteomics and Bioinformatics, 2006, 4, 259-263.	6.9	940
99	Computing Ka and Ks with a consideration of unequal transitional substitutions. BMC Evolutionary Biology, 2006, 6, 44.	3.2	78
100	TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Research, 2006, 34, D572-D580.	14.5	465
101	Data Integration in Bioinformatics: Current Efforts and Challenges. , 0, , .		18