
Chester J Sands

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7673344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantification of blue carbon pathways contributing to negative feedback on climate change following glacier retreat in West Antarctic fjords. Global Change Biology, 2022, 28, 8-20.	9.5	16
2	Response to concerns regarding the role of Antarctic blue carbon habitats in a global context. Global Change Biology, 2022, 28, .	9.5	0
3	Geographic patterns of soft-bottoms benthic communities in Chilean Patagonian fjords (47°S-54°S) - influence of environmental stress on diversity patterns and stable isotope signatures. Progress in Oceanography, 2022, 204, 102810.	3.2	1
4	Perspective: Increasing blue carbon around Antarctica is an ecosystem service of considerable societal and economic value worth protecting. Global Change Biology, 2021, 27, 5-12.	9.5	35
5	Taxonomy 2.0: computer-aided identification tools to assist Antarctic biologists in the field and in the laboratory. Antarctic Science, 2021, 33, 39-51.	0.9	10
6	Global Connectivity of Southern Ocean Ecosystems. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	28
7	Societal importance of Antarctic negative feedbacks on climate change: blue carbon gains from sea ice, ice shelf and glacier losses. Die Naturwissenschaften, 2021, 108, 43.	1.6	4
8	Pragmatic Assignment of Species Groups Based on Primary Species Hypotheses: The Case of a Dominant Component of the Southern Ocean Benthic Fauna. Frontiers in Marine Science, 2021, 8, .	2.5	5
9	Impacts of glacial retreat on benthic iron supply using a radium/thorium disequilibrium approach. , 2021, , .		0
10	Evolutionary innovations in Antarctic brittle stars linked to glacial refugia. Ecology and Evolution, 2021, 11, 17428-17446.	1.9	3
11	Genetic variation in the small bivalve Nuculana inaequisculpta along a retreating glacier fjord, King George Island, Antarctica. Revista De Biologia Marina Y Oceanografia, 2021, 56, 151-156.	0.2	1
12	Climate Mitigation through Biological Conservation: Extensive and Valuable Blue Carbon Natural Capital in Tristan da Cunha's Giant Marine Protected Zone. Biology, 2021, 10, 1339.	2.8	6
13	Interpopulational differences in the nutritional condition of <i>Aequiyoldia eightsii</i> (Protobranchia: Nuculanidae) from the Western Antarctic Peninsula during austral summer. PeerJ, 2021, 9, e12679.	2.0	1
14	Protecting Antarctic blue carbon: as marine ice retreats can the law fill the gap?. Climate Policy, 2020, 20, 149-162.	5.1	14
15	Gene flow in the Antarctic bivalve <i>Aequiyoldia eightsii</i> (Jay, 1839) suggests a role for the Antarctic Peninsula Coastal Current in larval dispersal. Royal Society Open Science, 2020, 7, 200603.	2.4	11
16	A Previously Undescribed Helotialean Fungus That Is Superabundant in Soil Under Maritime Antarctic Higher Plants. Frontiers in Microbiology, 2020, 11, 615608.	3.5	4
17	Blue carbon gains from glacial retreat along Antarctic fjords: What should we expect?. Global Change Biology, 2020, 26, 2750-2755.	9.5	28
18	The influence of glacial melt and retreat on the nutritional condition of the bivalve Nuculana inaequisculpta (Protobranchia: Nuculanidae) in the West Antarctic Peninsula. PLoS ONE, 2020, 15, e0233513.	2.5	3

CHESTER J SANDS

#	Article	IF	CITATIONS
19	Protecting Antarcticas coastal blue carbon: a case for international cooperation. , 2020, , .		Ο
20	Is reproductive strategy a key factor in understanding the evolutionary history of Southern Ocean Asteroidea (Echinodermata)?. Ecology and Evolution, 2019, 9, 8465-8478.	1.9	14
21	Dwarf brooder versus giant broadcaster: combining genetic and reproductive data to unravel cryptic diversity in an Antarctic brittle star. Heredity, 2019, 123, 622-633.	2.6	15
22	Extremes in Benthic Ecosystem Services; Blue Carbon Natural Capital Shallower Than 1000 m in Isolated, Small, and Young Ascension Island's EEZ. Frontiers in Marine Science, 2019, 6, .	2.5	16
23	Marine plastics threaten giant Atlantic Marine Protected Areas. Current Biology, 2018, 28, R1137-R1138.	3.9	78
24	Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170176.	3.4	65
25	Antarctic and Sub-Antarctic Asteroidea database. ZooKeys, 2018, 747, 141-156.	1.1	13
26	Geographic structure in the Southern Ocean circumpolar brittle star Ophionotus victoriae (Ophiuridae) revealed from mt DNA and singleâ€nucleotide polymorphism data. Ecology and Evolution, 2017, 7, 475-485.	1.9	30
27	Crossing the Divide: Admixture Across the Antarctic Polar Front Revealed by the Brittle Star <i>Astrotoma agassizii</i> . Biological Bulletin, 2017, 232, 198-211.	1.8	24
28	Biological and physical characterization of the seabed surrounding Ascension Island from 100–1000 m. Journal of the Marine Biological Association of the United Kingdom, 2017, 97, 647-659.	0.8	12
29	Functional group diversity is key to Southern Ocean benthic carbon pathways. PLoS ONE, 2017, 12, e0179735.	2.5	33
30	Biodiversity signature of the Last Glacial Maximum at South Georgia, Southern Ocean. Journal of Biogeography, 2016, 43, 2391-2399.	3.0	20
31	Why is the South Orkney Island shelf (the world's first high seas marine protected area) a carbon immobilization hotspot?. Global Change Biology, 2016, 22, 1110-1120.	9.5	31
32	East Weddell Sea echinoids from the JR275 expedition. ZooKeys, 2015, 504, 1-10.	1.1	3
33	Geographic isolation and physiological mechanisms underpinning species distributions at the range limit hotspot of South Georgia. Reviews in Fish Biology and Fisheries, 2014, 24, 485-492.	4.9	5
34	Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Marine Biology, 2013, 160, 2295-2317.	1.5	79
35	The macro- and megabenthic fauna on the continental shelf of the eastern Amundsen Sea, Antarctica. Continental Shelf Research, 2013, 68, 80-90.	1.8	34
36	A new brooding species of brittle star (Echinodermata: Ophiuroidea) from Antarctic waters. Polar Biology, 2013, 36, 115-126.	1.2	9

CHESTER J SANDS

#	Article	IF	CITATIONS
37	Phylogenetic position of Antarctic Scalpelliformes (Crustacea: Cirripedia: Thoracica). Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 73, 99-116.	1.4	21
38	Amundsen Sea Mollusca from the BIOPEARL II expedition. ZooKeys, 2013, 294, 1-8.	1.1	5
39	Observations of the ophiuroids from the West Antarctic sector of the Southern Ocean. Antarctic Science, 2013, 25, 3-10.	0.9	11
40	Environmental Complexity and Biodiversity: The Multi-Layered Evolutionary History of a Log-Dwelling Velvet Worm in Montane Temperate Australia. PLoS ONE, 2013, 8, e84559.	2.5	16
41	Antarctic Tardigrada: a first step in understanding molecular operational taxonomic units (MOTUs) and biogeography of cryptic meiofauna. Invertebrate Systematics, 2012, 26, 526.	1.3	38
42	Exploring Pandora's Box: Potential and Pitfalls of Low Coverage Genome Surveys for Evolutionary Biology. PLoS ONE, 2012, 7, e49202.	2.5	31
43	Phylum Tardigrada: A re-evaluation of the Parachela. Zootaxa, 2011, 2819, 51.	0.5	103
44	The need to implement the Convention on Biological Diversity at the high latitude site, South Georgia. Antarctic Science, 2011, 23, 323-331.	0.9	10
45	The limnology and biology of the Dufek Massif, Transantarctic Mountains 82° South. Polar Science, 2010, 4, 197-214.	1.2	45
46	Biodiversity of an unknown Antarctic Sea: assessing isopod richness and abundance in the first benthic survey of the Amundsen continental shelf. Marine Biodiversity, 2009, 39, 27-43.	1.0	49
47	Single copy nuclear DNA markers for the onychophoran Phallocephale tallagandensis. Conservation Genetics Resources, 2009, 1, 17-19.	0.8	8
48	Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using the Tardigrada. BMC Ecology, 2008, 8, 7.	3.0	42
49	Phylum Tardigrada: an "individual―approach. Cladistics, 2008, 24, 861-871.	3.3	105
50	Catchments catch all: long-term population history of a giant springtail from the southeast Australian highlands - a multigene approach. Molecular Ecology, 2007, 16, 1865-1882.	3.9	51
51	Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biology, 2007, 30, 1059-1068.	1.2	98
52	A tale of two flatties: different responses of two terrestrial flatworms to past environmental climatic fluctuations at Tallaganda in montane southeastern Australia. Molecular Ecology, 2006, 15, 4513-4531.	3.9	79
53	Phylogeography recapitulates topography: very fine-scale local endemism of a saproxylic â€~giant' springtail at Tallaganda in the Great Dividing Range of south-east Australia. Molecular Ecology, 2004, 13, 3329-3344.	3.9	82
54	Genetic differentiation in the squid Moroteuthis ingens inferred from RAPD analysis. Polar Biology, 2003, 26, 166-170.	1.2	19

#	Article	IF	CITATIONS
55	Against the flow: evidence of multiple recent invasions of warmer continental shelf waters by a Southern Ocean brittle star. Frontiers in Ecology and Evolution, 0, 3, .	2.2	26