Yongqing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7673282/publications.pdf

Version: 2024-02-01

93 1,460 22 33
papers citations h-index g-index

94 94 94 1227 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Electroreduction of N $<$ sub $>$ 2 $<$ /sub $>$ to NH $<$ sub $>$ 3 $<$ /sub $>$ catalyzed by a Mn/Re(111) single-atom alloy catalyst with high activity and selectivity: a new insight from a first-principles study. Catalysis Science and Technology, 2022, 12, 4074-4085.	4.1	6
2	Theoretical investigation of electronic structures, second-order NLO responses of cyclometalated lr(<scp>iii</scp>) and Rh(<scp>iii</scp>) counterpart complexes: effect of metal centers. New Journal of Chemistry, 2022, 46, 10652-10661.	2.8	7
3	A computational study on second-order nonlinear optical properties based on bis-cyclometalated lr(<scp>iii</scp>) complexes: redox and substituent effects. New Journal of Chemistry, 2021, 45, 10725-10734.	2.8	8
4	The second-order nonlinear optical property of hydrazones-based photochromic complexes: A DFT study. Journal of Molecular Liquids, 2021, 327, 114882.	4.9	13
5	DFT study of effect of substituents on second-order NLO response of novel BODIPY dyes. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	1
6	Electronic and Optical Properties of C4N2H14-Based Lead-Less Halide Perovskites Investigated by First Principles. Journal of Physical Chemistry C, 2021, 125, 19445-19454.	3.1	0
7	Structural, electrical, optical properties and stability of Cs2InBr5-yXy·H2O (XÂ=ÂCl, I, yÂ=Â0, 1, 2, 3, 4, 5) perovskites: the first principles investigation. Thin Solid Films, 2021, 733, 138805.	1.8	2
8	The inspiration and challenge for through-space charge transfer architecture: from thermally activated delayed fluorescence to non-linear optical properties. Physical Chemistry Chemical Physics, 2021, 23, 15881-15898.	2.8	11
9	Strong Boron–Carbon Bonding Interaction Drives CO ₂ Reduction to Ethanol over the Boron-Doped Cu(111) Surface: An Insight from the First-Principles Calculations. Journal of Physical Chemistry C, 2021, 125, 572-582.	3.1	12
10	Regulation of the Molecular Architectures on Second-Order Nonlinear Optical Response and Thermally Activated Delayed Fluorescence Property: Homoconjugation and Twisted Donor–Acceptor. Journal of Physical Chemistry C, 2020, 124, 921-931.	3.1	19
11	Novel cyclic and linearizing cyclic Pd(II) nanohoop-based cordination complexes achieving nonlinear optical activity transparency trade-off optimization. Organic Electronics, 2020, 78, 105564.	2.6	5
12	Tuning of Second-Order Nonlinear Optical Properties Based on [2.2]Paracyclophanes Isomer: the Relative Configuration and Polarizable Environment. Journal of Physical Chemistry C, 2020, 124, 21692-21701.	3.1	12
13	Second-order NLO properties of bis-cyclometalated iridium(III) complexes with \hat{l}^2 -diketiminate ancillary ligand: Substituent and redox effect. Inorganica Chimica Acta, 2020, 511, 119835.	2.4	4
14	The second-order NLO property of a photoswitchable heteroditpioc ion-pair receptor based on 2-pyridyl acylhydrazone linking with 2,6-pyridine bisamide: The impacts of metal cations and anions. Journal of Molecular Graphics and Modelling, 2020, 100, 107652.	2.4	2
15	Regulating the NLO response of anthraquinone-supported thiourea-linked crown ether macrocycle by introducing metal cations: A DFT study. Journal of Theoretical and Computational Chemistry, 2020, 19, 2050017.	1.8	2
16	New Structure-Nonlinear Optical Property Correlation in "Russian Doll―Complexes Formed by Nested Pd(II) Nanorings. Journal of Physical Chemistry C, 2020, 124, 12655-12664.	3.1	10
17	Structural, Electronic, Stability, and Optical Properties of CsPb1–xSnxlBr2 Perovskites: A First-Principles Investigation. Journal of Physical Chemistry C, 2019, 123, 20476-20487.	3.1	23
18	Application of Multifunctional X-Doped Sumanene (X= Si, Ge, O, S and Se) for Concave–Convex Supramolecular Assembly with C ₆₀ and Their Nonlinear Optical Properties. Journal of Physical Chemistry C, 2019, 123, 27811-27822.	3.1	9

#	Article	IF	CITATIONS
19	Switchable second-order nonlinear optical response of platinum-sensitized dithienylethenes. Journal of Theoretical and Computational Chemistry, 2019, 18, 1950022.	1.8	0
20	Redox-triggered switch based on platinum(<scp>ii</scp>) acetylacetonate complexes bearing an isomeric donor–acceptor conjugation ligand shows a high second-order nonlinear optical response. New Journal of Chemistry, 2019, 43, 11263-11274.	2.8	12
21	A thorough understanding of the nonlinear optical properties of BODIPY/carborane/diketopyrrolopyrrole hybrid chromophores: module contribution, linear combination, one-/two-dimensional difference and carborane's arrangement. Journal of Materials Chemistry C. 2019, 7, 7531-7547.	5.5	36
22	Impact of the dielectric constant on the first hyperpolarizabilities and the Singletâ^Triplet gap in Tand V-Shaped donor-acceptor-donor molecules. Organic Electronics, 2019, 70, 193-204.	2.6	12
23	Theoretical exploration of second-order nonlinear optical properties of mono- and bimetallic Pt(II) dithienylcyclopentene complexes: Ligands and photoisomerization effect. Journal of Organometallic Chemistry, 2019, 888, 29-36.	1.8	8
24	DFT Studies on Second-order Nonlinear Optical Response of Ir(C^N)2(pic) Complexes. Chemical Research in Chinese Universities, 2019, 35, 333-339.	2.6	4
25	Second-order NLO properties of bis-cyclometalated iridium(â¢) complexes: Substituent effect and redox switch. Journal of Molecular Graphics and Modelling, 2019, 89, 131-138.	2.4	18
26	A cation-selective and anion-controlled benzothiazolyl-attached macrocycle for NLO-based cation detection: variational first hyperpolarizabilities. New Journal of Chemistry, 2018, 42, 6091-6100.	2.8	12
27	Third-Order Nonlinear Optical Properties of Endohedral Fullerene (H ₂) ₂ @C ₇₀ and (H ₂ O) ₂ @C ₇₀ Accompanied by the Prospective of Novel (HF) ₂ @C ₇₀ . Journal of Physical Chemistry C, 2018, 122, 6835-6845.	3.1	24
28	The substitution effect of heterocyclic rings to tune the optical and nonlinear optical properties of hybrid chalcones: A comparative study. Journal of Molecular Graphics and Modelling, 2018, 81, 25-31.	2.4	42
29	DFT/TDDFT, NPA, and AIM-based study of the molecular switching properties of photocyclization and metallochromism of the DAE complexes. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	9
30	Optical properties of photovoltaic materials: Organic-inorganic mixed halide perovskites CH3NH3Pb(I1-yXy)3 (Xâ€=â€⁻Cl, Br). Computational and Theoretical Chemistry, 2018, 1144, 1-8.	2.5	12
31	Improving the NLO response of bis-cyclometalated iridium(â¢) complexes by modifying ligands: A DFT study. Journal of Organometallic Chemistry, 2018, 869, 18-25.	1.8	23
32	The structural, electronic, and optical properties of organic–inorganic mixed halide perovskites CH		

#		IF	CITATIONS
37	Second-order NLO responses of two-cavity inorganic electrides Li _n @B ₂₀ H ₂₆ (n = 1, 2): evolutions with increasing excess electron number and various Bâ€"B connection sites of B ₂₀ H ₂₆ . Physical Chemistry Chemical Physics, 2017, 19, 2557-2566.	2.8	13
38	A structure–property interplay between the width and height of cages and the static third order nonlinear optical responses for fullerenes: applying gamma density analysis. Physical Chemistry Chemical Physics, 2017, 19, 2322-2331.	2.8	20
39	Theoretical investigation on second-order nonlinear optical properties of ruthenium alkynyl–dihydroazulene/vinylheptafulvene complexes. Journal of Molecular Graphics and Modelling, 2017, 77, 363-371.	2.4	3
40	Self-Assembled Donor–Acceptor Chromophores: Evident Layer Effect on the First Hyperpolarizability and Two-Dimensional Charge Transfer Character. Journal of Physical Chemistry C, 2017, 121, 21616-21626.	3.1	17
41	The novel link between planar möbius aromatic and third order nonlinear optical properties of metal–bridged polycyclic complexes. Scientific Reports, 2017, 7, 10182.	3.3	19
42	Multinuclear "Staircase―Oligomers Based on the (Et ₂ C ₂ B ₄ H ₄)Fe(Î- ⁶ -C ₆ H ₆ C ₆ H ₆ H ₆ B _{H₆H_{H_H}}	հիչ) 3.1)	20
43	Planar Octagonal Tetranuclear Cobaltacarborane Macrocycle [(Î- ⁵ -C ₅ Me ₅)Co(2,3-Et ₂ C ₂ B ₄ H <sub 121.="" 2017.="" 28462-28474.<="" 2d="" and="" c.="" chemistry="" controlled="" cubic="" for="" journal="" multistate="" nlo="" nonlinear="" of="" optics:="" physical="" switch.="" td="" ultra-high-response=""><td>>3.1</td></sub>	>3.1	-5-C≡C- 19
44	Structural transitions and electronic properties of sodium superoxide at high pressures. RSC Advances, 2016, 6, 67910-67915.	3.6	5
45	Theoretical study on the charge transfer mechanism at donor/acceptor interface: Why TTF/TCNQ is inadaptable to photovoltaics?. Journal of Chemical Physics, 2016, 145, 244705.	3.0	13
46	Intramolecular photo-induced electron transfer in nonlinear optical chromophores: Fullerene (C60) derivatives. Organic Electronics, 2016, 33, 290-299.	2.6	27
47	Electronic properties of SrFeO 2 doped by Ca and Ba: A first-principles study. Computational and Theoretical Chemistry, 2016, 1095, 112-117.	2.5	7
48	The effect of heterocyclic π bridges on second order nonlinear optical properties of compounds formed between ferrocenyl and corannulenyl. RSC Advances, 2016, 6, 97063-97069.	3.6	9
49	Second-Order Nonlinear Optical Properties of Carboranylated Square-Planar Pt(II) Zwitterionic Complexes: One-/Two-Dimensional Difference and Substituent Effect. Journal of Physical Chemistry A, 2016, 120, 9330-9340.	2.5	11
50	Second-Order Nonlinear Optical Responses and Concave–Convex Interactions of Size-Selective Fullerenes/Corannulene Recognition Pairs: The Effect of Fullerene Size. Journal of Physical Chemistry C, 2016, 120, 26034-26043.	3.1	8
51	Second-order nonlinear optical responses of carboranyl-substituted indole/indoline derivatives: impact of different substituents, lournal of Molecular Graphics and Modelling, 2016, 67, 111-118. Electronic properties of polyoxometalate derivatives	2.4	15
52	[(<scp>C< scp>_{2< sub><scp>B< scp>_{9< sub><scp>H< scp>_{11< sub>) <scp>M< scp> (scp>M< scp> (scp>M< scp> (scp>M< scp> (scp>M< scp>) (scp>) (scp></scp>}</scp>}</scp>}</scp>	erl o ck 10	Tef 50 137 T
53	Effect of π-conjugate units on the ferrocene-based complexes: Switchable second order nonlinear optics controlled by redox stimuli. Dyes and Pigments, 2016, 126, 29-37.	3.7	11
54	Ion–π interaction in impacting the nonlinear optical properties of ion–buckybowl complexes. Journal of Molecular Graphics and Modelling, 2016, 64, 139-146.	2.4	5

#	Article	IF	CITATIONS
55	Structural and electronic properties of alkali metal peroxides at high pressures. RSC Advances, 2015, 5, 104337-104342.	3.6	12
56	Ferrocene/fullerene hybrids showing large second-order nonlinear optical activities: impact of the cage unit size. Dalton Transactions, 2015, 44, 10078-10088.	3.3	38
57	Theoretical design and characterization of pyridalthiadiazole-based chromophores with fast charge transfer at donor/acceptor interface toward small molecule organic photovoltaics. RSC Advances, 2015, 5, 29401-29411.	3.6	46
58	Third order NLO properties of corannulene and its Li-doped dimers: effect of concave–convex and convex–convex structures. RSC Advances, 2015, 5, 79783-79791.	3.6	24
59	Second-Order Nonlinear Optical Response of Electron Donor–Acceptor Hybrids Formed between Corannulene and Metallofullerenes. Journal of Physical Chemistry C, 2015, 119, 24965-24975.	3.1	60
60	Formation Mechanisms, Structure, Solution Behavior, and Reactivity of Aminodiborane. Journal of the American Chemical Society, 2015, 137, 12406-12414.	13.7	42
61	Interlayer charge-transfer in impacting the second hyperpolarizabilities: Radical and cation species of hexathiophenalenylium and its nitro dimers. Journal of Molecular Graphics and Modelling, 2015, 55, 33-40.	2.4	11
62	Large Nonlinear Optical Responses of Dimers Bearing a Donor and Acceptor: Long, Intradimer Multicenter Bonding. Journal of Physical Chemistry C, 2014, 118, 28746-28756.	3.1	37
63	Helical Carbon Segment in Carbon–Boron–Nitride Heteronanotubes: Structure and Nonlinear Optical Properties. ChemPlusChem, 2014, 79, 732-736.	2.8	16
64	Enhancement of second-order nonlinear optical response in boron nitride nanocone: Li-doped effect. Journal of Molecular Graphics and Modelling, 2014, 48, 28-35.	2.4	23
65	Probe the accumulation modes of the Au–C22H14dimer on the structure and NLO properties. Molecular Physics, 2014, 112, 1918-1923.	1.7	3
66	Redox control of ferrocene-based complexes with systematically extended ï€-conjugated connectors: switchable and tailorable second order nonlinear optics. Physical Chemistry Chemical Physics, 2014, 16, 4900.	2.8	69
67	Impact of Redox Stimuli on Ferrocene–Buckybowl Complexes: Switchable Optoelectronic and Nonlinear Optical Properties. Organometallics, 2014, 33, 3341-3352.	2.3	46
68	Mechanistic insight into the second-order nonlinear optical properties of Ru-coordinated DTE complexes: Photoisomerization, redox, and protonation switches. Journal of Organometallic Chemistry, 2014, 772-773, 100-106.	1.8	8
69	Syntheses, structures, and photoluminescence properties of $Zn(II)/Cd(II)$ supramolecular architectures based on 1,5-naphthalenedisulfonate and 1,10-phenanthroline ligands. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2013, 144, 1507-1512.	1.8	2
70	Strategy for Enhancing Second-Order Nonlinear Optical Properties of the Pt(II) Dithienylethene Complexes: Substituent Effect, π-Conjugated Influence, and Photoisomerization Switch. Journal of Physical Chemistry A, 2013, 117, 12497-12510.	2.5	34
71	Self-assembly of metal–organic frameworks based on N-donor ligand and flexible tricarboxylic acids with different angular characters. CrystEngComm, 2013, 15, 8214.	2.6	26
72	Two M(II)-1,5-NDS-dafo supramolecular architectures (Mâ \in %=â \in %Cu, Cd): syntheses, structures, and photoluminescence properties. Journal of Coordination Chemistry, 2013, 66, 2702-2711.	2.2	3

#	Article	IF	Citations
73	BN Segment Doped Effect on the First Hyperpolarizibility of Heteronanotubes: Focused on an Effective Connecting Pattern. Journal of Physical Chemistry C, 2013, 117, 10039-10044.	3.1	26
74	THEORETICAL INVESTIGATION ON PHOTOISOMERIZATION SWITCHABLE SECOND-ORDER NONLINEAR OPTICAL PROPERTIES OF $\hat{\mathfrak{h}}$ -SHAPED DIARYLETHENE DERIVATIVES. Journal of Theoretical and Computational Chemistry, 2013, 12, 1350029.	1.8	2
75	Constructing nanosized polyanions with diverse structures by the self-assembly of W/Nb mixed-addendum polyoxometalate and lanthanide ion. CrystEngComm, 2012, 14, 1397-1404.	2.6	37
76	Secondâ€order nonlinear optical responses switching of Nâ^§Nâ^§N ruthenium carboxylate complexes with protonâ€electron transfer. International Journal of Quantum Chemistry, 2012, 112, 779-788.	2.0	6
77	The Excess Electron in a Boron Nitride Nanotube: Pyramidal NBO Charge Distribution and Remarkable First Hyperpolarizability. Chemistry - A European Journal, 2012, 18, 11350-11355.	3.3	87
78	Inside Cover: Spiral Intramolecular Charge Transfer and Large First Hyperpolarizability in Möbius Cyclacenes: New Insight into the Localized π Electrons (ChemPhysChem 9/2012). ChemPhysChem, 2012, 13, 2222-2222.	2.1	0
79	Theoretical study on second-order nonlinear optical properties of 1,10-phenanthroline Ru(II) complexes. Science China Chemistry, 2012, 55, 1421-1427.	8.2	5
80	Quantum chemical studies on tuning the second-order nonlinear optical molecular switching of triarylborane derivatives. Science Bulletin, 2012, 57, 1772-1780.	1.7	1
81	Quantum Chemical Study of Redox-Switchable Second-Order Nonlinear Optical Responses of Dâ^ï∈â∈"A System BNbpy and Metal Pt(II) Chelate Complex. Journal of Physical Chemistry A, 2011, 115, 13564-13572.	2.5	44
82	Theoretical study on stability and nonlinear optical properties of tetrahydropyrrole diradical and its isoelectronic systems in different electronic states. Science China Chemistry, 2011, 54, 1086-1093.	8.2	2
83	DFT study on the secondâ€order nonlinear optical property of 12â€vertex closeâ€carborane derivatives. International Journal of Quantum Chemistry, 2011, 111, 1039-1047.	2.0	13
84	The influence of $M\hat{a}\in M$ attraction on nonlinear optical properties of (XMPH ₃) ₂ (X = F, Cl; and M = Au, Ag and Cu): A theoretical study. International Journal of Quantum Chemistry, 2010, 110, 865-873.	2.0	1
85	Theoretical study on secondâ€order nonlinear optical properties of spin crossover Fe(III) phenolateâ€pyridyl Schiff base complexes. International Journal of Quantum Chemistry, 2010, 110, 1863-1870.	2.0	2
86	Theoretical investigation on structures, electronic spectra and nonlinear optical properties of gold compounds [X-"Au(PMe3)â€2]. Science China Chemistry, 2010, 53, 1149-1154.	8.2	2
87	Structures and properties of metal-free and magnesium tetrathieno[2,3-b]porphyrazine investigated using density functional theory. Science China Chemistry, 2010, 53, 1746-1753.	8.2	2
88	Theoretical studies on electronic spectra and second-order nonlinear optical properties of barbituric acid derivatives substituted with schiff base. Chinese Journal of Chemistry, 2010, 22, 425-429.	4.9	3
89	DFT study on second-order nonlinear optical properties of Pt(II) complexes with different chromophores. Science in China Series B: Chemistry, 2009, 52, 144-152.	0.8	5
90	Theoretical Study on the Relationship between Spin Multiplicity Effects and Nonlinear Optical Properties of the Pyrrole Radical (C4H4N·). Journal of Physical Chemistry A, 2008, 112, 83-88.	2.5	32

Yongqing

#	Article	IF	CITATIONS
91	Structure and second-order NLO property of the molecules bridged through n-vertex bis-substituted carborane (n=5, 6, 7). Science Bulletin, 2007, 52, 2326-2330.	1.7	7
92	Quantum chemical study on ferromagnetic property on the N, N-dimethylaniline dimer radical cation. International Journal of Quantum Chemistry, 2002, 89, 484-488.	2.0	0
93	The effect of conformational dependent properties of radical cations on poly(N,N-dimethylaniline). Macromolecular Chemistry and Physics, 2000, 201, 1774-1779.	2.2	2