
Wansong Zong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7672941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of bromide on molecular transformation of dissolved effluent organic matter during ozonation, UV/H2O2, UV/persulfate, and UV/chlorine treatments. Science of the Total Environment, 2022, 811, 152328.	3.9	13
2	Toxic mechanism on phenanthrene-triggered cell apoptosis, genotoxicity, immunotoxicity and activity changes of immunity protein in Eisenia fetida: Combined analysis at cellular and molecular levels. Science of the Total Environment, 2022, 819, 153167.	3.9	33
3	Insight into the Molecular Mechanism for the Discrepant Inhibition of Microcystins (MCLR, LA, LF, LW,) Tj ETQq1	0.78431 1.5	4_rgBT /Ov∈
4	Toxic mechanism of pyrene to catalase and protective effects of vitamin C: Studies at the molecular and cell levels. International Journal of Biological Macromolecules, 2021, 171, 225-233.	3.6	20
5	Research on the discrepant inhibition mechanism of microcystin-LR disinfectant by-products target to protein phosphatase 1. Environmental Science and Pollution Research, 2021, 28, 45586-45595.	2.7	2
6	Theoretical study of the formation and nucleation mechanism of highly oxygenated multi-functional organic compounds produced by α-pinene. Science of the Total Environment, 2021, 780, 146422.	3.9	12
7	Toxic mechanism on phenanthrene-induced cytotoxicity, oxidative stress and activity changes of superoxide dismutase and catalase in earthworm (Eisenia foetida): A combined molecular and cellular study. Journal of Hazardous Materials, 2021, 418, 126302.	6.5	66
8	Probing the biological toxicity of pyrene to the earthworm Eisenia fetida and the toxicity pathways of oxidative damage: A systematic study at the animal and molecular levels. Environmental Pollution, 2021, 289, 117936.	3.7	20
9	Binding mechanism of maltol with catalase investigated by spectroscopy, molecular docking, and enzyme activity assay. Journal of Molecular Recognition, 2020, 33, e2822.	1.1	11
10	Anthracene-induced DNA damage and oxidative stress: a combined study at molecular and cellular levels. Environmental Science and Pollution Research, 2020, 27, 41458-41474.	2.7	19
11	Research on the Impact and Mechanism for the Inhibition of Micrococcus Catalase Activity by Typical Tetracyclines. BioMed Research International, 2020, 2020, 1-13.	0.9	1
12	Regulation Efficacy and Mechanism of the Toxicity of Microcystin-LR Targeting Protein Phosphatase 1 via the Biodegradation Pathway. Toxins, 2020, 12, 790.	1.5	5
13	Catalase and superoxide dismutase response and the underlying molecular mechanism for naphthalene. Science of the Total Environment, 2020, 736, 139567.	3.9	64
14	Molecular mechanism for the discrepant inhibition of microcystins on protein phosphatase 1. Environmental Science and Pollution Research, 2019, 26, 21774-21783.	2.7	4
15	A study on the interaction between cadmium and αâ€chymotrypsin and the underlying mechanisms. Journal of Biochemical and Molecular Toxicology, 2019, 33, e22248.	1.4	7
16	Interaction of a digestive protease, Candida rugosa lipase, with three surfactants investigated by spectroscopy, molecular docking and enzyme activity assay. Science of the Total Environment, 2018, 622-623, 306-315.	3.9	48
17	Characterizing the binding interactions of PFOA and PFOS with catalase at the molecular level. Chemosphere, 2018, 203, 360-367.	4.2	66
18	Exploring the binding interaction between copper ions and Candida rugosa lipase. Toxicology Research, 2018, 7, 1100-1107.	0.9	7

WANSONG ZONG

#	Article	IF	CITATIONS
19	Molecular mechanism of composite nanoparticles TiO 2 /WO 3 /GO-induced activity changes of catalase and superoxide dismutase. Chemico-Biological Interactions, 2018, 292, 30-36.	1.7	7
20	Regulation on the toxicity of microcystin-LR target to protein phosphatase 1 by biotransformation pathway: effectiveness and mechanism. Environmental Science and Pollution Research, 2018, 25, 26020-26029.	2.7	8
21	Evaluation of the Direct and Indirect Regulation Pathways of Glutathione Target to the Hepatotoxicity of Microcystin-LR. BioMed Research International, 2018, 2018, 1-8.	0.9	7
22	Molecular Mechanism for the Regulation of Microcystin Toxicity to Protein Phosphatase 1 by Glutathione Conjugation Pathway. BioMed Research International, 2017, 2017, 1-10.	0.9	11
23	Novel biomarker pipeline to probe the oxidation sites and oxidation degrees of hemoglobin in bovine erythrocytes exposed to oxidative stress. Biomedical Chromatography, 2016, 30, 810-817.	0.8	1
24	Microcystin-associated disinfection by-products: The real and non-negligible risk to drinking water subject to chlorination. Chemical Engineering Journal, 2015, 279, 498-506.	6.6	32
25	Oxidation by-products formation of microcystin-LR exposed to UV/H2O2: Toward the generative mechanism and biological toxicity. Water Research, 2013, 47, 3211-3219.	5.3	58
26	Evaluation on the generative mechanism and biological toxicity of microcystin-LR disinfection by-products formed by chlorination. Journal of Hazardous Materials, 2013, 252-253, 293-299.	6.5	32
27	The use of outer filter effects for Cu ²⁺ quantitation: a unique example for monitoring nonfluorescent molecule with fluorescence. Luminescence, 2012, 27, 292-296.	1.5	7
28	A New Strategy to Identify and Eliminate the Inner Filter Effects by Outer Filter Technique. Journal of Fluorescence, 2011, 21, 1249-1254.	1.3	39
29	Novel biomarkers of protein oxidation sites and degrees using horse cytochrome c as the target by mass spectrometry. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 1581-1586.	2.0	8
30	A new biomarker of protein oxidation degree and site using angiotensin as the target by MS. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 908-911.	2.0	6
31	Cyclic voltammetry: A new strategy for the evaluation of oxidative damage to bovine insulin. Protein Science, 2010, 19, 263-268.	3.1	21
32	The oxidative products of methionine as site and content biomarkers for peptide oxidation. Journal of Peptide Science, 2010, 16, 148-152.	0.8	7
33	Influence of charge distribution on the discrepant MS/MS fragmentation of the native and oxidized FMRF: evidence for the mobile proton model. Journal of Peptide Science, 2010, 16, 687-692.	0.8	4
34	A Unique Approach to the Mobile Proton Model: Influence of Charge Distribution on Peptide Fragmentation. Journal of Physical Chemistry B, 2010, 114, 6350-6353.	1.2	10
35	Side-chain oxidative damage to cysteine on a glassy carbon electrode. Amino Acids, 2009, 37, 559-564.	1.2	1
36	Synthesis and Characterization of Nanoâ€Ziconium Dioxide in Recombination Surfactant Association System. Journal of Dispersion Science and Technology, 2007, 28, 1316-1324.	1.3	2