
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7672908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial. Lancet Oncology, The, 2016, 17, 1509-1520.	5.1	704
2	Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma. New England Journal of Medicine, 2019, 381, 1124-1135.	13.9	573
3	Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 3 multicentre randomised controlled trial. Lancet Oncology, The, 2012, 13, 163-171.	5.1	468
4	Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ: British Medical Journal, 2018, 363, k4226.	2.4	362
5	Re-Evaluation of 6th Edition of AJCC Staging System for Nasopharyngeal Carcinoma and Proposed Improvement Based on Magnetic Resonance Imaging. International Journal of Radiation Oncology Biology Physics, 2009, 73, 1326-1334.	0.4	236
6	Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma. Clinical Cancer Research, 2019, 25, 4271-4279.	3.2	234
7	Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study. Lancet Oncology, The, 2018, 19, 382-393.	5.1	232
8	Genomic Analysis of Tumor Microenvironment Immune Types across 14 Solid Cancer Types: Immunotherapeutic Implications. Theranostics, 2017, 7, 3585-3594.	4.6	214
9	Preliminary Results of a Prospective Randomized Trial Comparing Concurrent Chemoradiotherapy Plus Adjuvant Chemotherapy With Radiotherapy Alone in Patients With Locoregionally Advanced Nasopharyngeal Carcinoma in Endemic Regions of China. International Journal of Radiation Oncology Biology Physics. 2008. 71. 1356-1364.	0.4	207
10	Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Research, 2020, 30, 1024-1042.	5.7	182
11	Concurrent chemoradiotherapy with/without induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma: Longâ€ŧerm results of phase 3 randomized controlled trial. International Journal of Cancer, 2019, 145, 295-305.	2.3	168
12	Progress report of a randomized trial comparing longâ€ŧerm survival and late toxicity of concurrent chemoradiotherapy with adjuvant chemotherapy versus radiotherapy alone in patients with stage III to IVB nasopharyngeal carcinoma from endemic regions of China. Cancer, 2013, 119, 2230-2238.	2.0	144
13	Proposed modifications and incorporation of plasma Epsteinâ€Barr virus DNA improve the TNM staging system for Epsteinâ€Barr virusâ€related nasopharyngeal carcinoma. Cancer, 2019, 125, 79-89.	2.0	143
14	Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy. Radiotherapy and Oncology, 2014, 110, 390-397.	0.3	126
15	Prognostic factors and failure patterns in non-metastatic nasopharyngeal carcinoma after intensity-modulated radiotherapy. Chinese Journal of Cancer, 2016, 35, 103.	4.9	124
16	Retropharyngeal lymph node metastasis in nasopharyngeal carcinoma detected by magnetic resonance imaging. Cancer, 2008, 113, 347-354.	2.0	119
17	The volume to be irradiated during selective neck irradiation in nasopharyngeal carcinoma. Cancer, 2009, 115, 680-688.	2.0	118
18	Adjuvant chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: Long-term results of a phase 3 multicentre randomised controlled trial. European Journal of Cancer, 2017, 75, 150-158.	1.3	115

#	Article	IF	CITATIONS
19	The seventh edition of the UICC/AJCC staging system for nasopharyngeal carcinoma is prognostically useful for patients treated with intensity-modulated radiotherapy from an endemic area in China. Radiotherapy and Oncology, 2012, 104, 331-337.	0.3	104
20	Long non-coding RNA DANCR stabilizes HIF- $1\hat{1}$ ± and promotes metastasis by interacting with NF90/NF45 complex in nasopharyngeal carcinoma. Theranostics, 2018, 8, 5676-5689.	4.6	102
21	The Pretreatment Albumin to Globulin Ratio Has Predictive Value for Long-Term Mortality in Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e94473.	1.1	99
22	Metronomic capecitabine as adjuvant therapy in locoregionally advanced nasopharyngeal carcinoma: a multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial. Lancet, The, 2021, 398, 303-313.	6.3	98
23	Extension of Local Disease in Nasopharyngeal Carcinoma Detected by Magnetic Resonance Imaging: Improvement of Clinical Target Volume Delineation. International Journal of Radiation Oncology Biology Physics, 2009, 75, 742-750.	0.4	95
24	Locoregional extension patterns of nasopharyngeal carcinoma and suggestions for clinical target volume delineation. Chinese Journal of Cancer, 2012, 31, 579-587.	4.9	94
25	Sparing all salivary glands with IMRT for head and neck cancer: Longitudinal study of patient-reported xerostomia and head-and-neck quality of life. Radiotherapy and Oncology, 2018, 126, 68-74.	0.3	74
26	The evolution of nasopharyngeal carcinoma staging. British Journal of Radiology, 2019, 92, 20190244.	1.0	73
27	Efficacy of the Additional Neoadjuvant Chemotherapy to Concurrent Chemoradiotherapy for Patients with Locoregionally Advanced Nasopharyngeal Carcinoma: a Bayesian Network Meta-analysis of Randomized Controlled Trials. Journal of Cancer, 2015, 6, 883-892.	1.2	68
28	Value of the prognostic nutritional index and weight loss in predicting metastasis and long-term mortality in nasopharyngeal carcinoma. Journal of Translational Medicine, 2015, 13, 364.	1.8	67
29	Proposed Lymph Node Staging System Using the International Consensus Guidelines for Lymph Node Levels Is Predictive for Nasopharyngeal Carcinoma Patients From Endemic Areas Treated With Intensity Modulated Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2013, 86, 249-256.	0.4	65
30	Plasma Epstein-Barr Virus DNA Load After Induction Chemotherapy Predicts Outcome in Locoregionally Advanced Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2019, 104, 355-361.	0.4	64
31	The Pattern of Time to Onset and Resolution of Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors in Cancer: A Pooled Analysis of 23 Clinical Trials and 8,436 Patients. Cancer Research and Treatment, 2021, 53, 339-354.	1.3	63
32	Prognostic Impact of Plasma Epstein-Barr Virus DNA in Patients with Nasopharyngeal Carcinoma Treated using Intensity-Modulated Radiation Therapy. Scientific Reports, 2016, 6, 22000.	1.6	58
33	The Tumour Response to Induction Chemotherapy has Prognostic Value for Long-Term Survival Outcomes after Intensity-Modulated Radiation Therapy in Nasopharyngeal Carcinoma. Scientific Reports, 2016, 6, 24835.	1.6	52
34	Prognostic value of the primary lesion apparent diffusion coefficient (ADC) in nasopharyngeal carcinoma: a retrospective study of 541 cases. Scientific Reports, 2015, 5, 12242.	1.6	51
35	Prognostic Value of the Cumulative Cisplatin Dose During Concurrent Chemoradiotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma: A Secondary Analysis of a Prospective Phase III Clinical Trial. Oncologist, 2016, 21, 1369-1376.	1.9	50
36	Establishing and applying nomograms based on the 8th edition of the UICC/AJCC staging system to select patients with nasopharyngeal carcinoma who benefit from induction chemotherapy plus concurrent chemoradiotherapy. Oral Oncology, 2017, 69, 99-107.	0.8	48

#	Article	IF	CITATIONS
37	Tumor response to neoadjuvant chemotherapy predicts longâ€ŧerm survival outcomes in patients with locoregionally advanced nasopharyngeal carcinoma: A secondary analysis of a randomized phase 3 clinical trial. Cancer, 2017, 123, 1643-1652.	2.0	48
38	Unraveling tumour microenvironment heterogeneity in nasopharyngeal carcinoma identifies biologically distinct immune subtypes predicting prognosis and immunotherapy responses. Molecular Cancer, 2021, 20, 14.	7.9	48
39	Hepatitis B virus screening and reactivation and management of patients with nasopharyngeal carcinoma: A largeâ€scale, bigâ€data intelligence platform–based analysis from an endemic area. Cancer, 2017, 123, 3540-3549.	2.0	47
40	Final Overall Survival Analysis of Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma: A Multicenter, Randomized Phase III Trial. Journal of Clinical Oncology, 2022, 40, 2420-2425.	0.8	44
41	Survival analysis of patients with advanced-stage nasopharyngeal carcinoma according to the Epstein-Barr virus status. Oncotarget, 2016, 7, 24208-24216.	0.8	43
42	Elective upper-neck versus whole-neck irradiation of the uninvolved neck in patients with nasopharyngeal carcinoma: an open-label, non-inferiority, multicentre, randomised phase 3 trial. Lancet Oncology, The, 2022, 23, 479-490.	5.1	43
43	Long-term outcomes of concurrent chemoradiotherapy versus radiotherapy alone in stage II nasopharyngeal carcinoma treated with IMRT: a retrospective study. Tumor Biology, 2016, 37, 4429-4438.	0.8	42
44	Effect of latent membrane protein 1 expression on overall survival in Epstein-Barr virus-associated cancers: a literature-based meta-analysis. Oncotarget, 2015, 6, 29311-29323.	0.8	37
45	Neoadjuvant chemotherapy in locally advanced nasopharyngeal carcinoma: Defining high-risk patients who may benefit before concurrent chemotherapy combined with intensity-modulated radiotherapy. Scientific Reports, 2015, 5, 16664.	1.6	34
46	Optimal cumulative cisplatin dose in nasopharyngeal carcinoma patients receiving additional induction chemotherapy. Cancer Science, 2018, 109, 751-763.	1.7	34
47	Socioeconomic factors and survival in patients with nonâ€metastatic head and neck squamous cell carcinoma. Cancer Science, 2017, 108, 1253-1262.	1.7	33
48	Magnetic Resonance Imaging-Detected Tumor Residue after Intensity-Modulated Radiation Therapy and its Association with Post-Radiation Plasma Epstein-Barr Virus Deoxyribonucleic Acid in Nasopharyngeal Carcinoma. Journal of Cancer, 2017, 8, 861-869.	1.2	32
49	Unambiguous advanced radiologic extranodal extension determined by MRI predicts worse outcomes in nasopharyngeal carcinoma: Potential improvement for future editions of N category systems. Radiotherapy and Oncology, 2021, 157, 114-121.	0.3	32
50	Comparison of Long-Term Survival and Toxicity of Cisplatin Delivered Weekly versus Every Three Weeks Concurrently with Intensity-Modulated Radiotherapy in Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e110765.	1.1	31
51	A National Study of Survival Trends and Conditional Survival in Nasopharyngeal Carcinoma: Analysis of the National Population-Based Surveillance Epidemiology and End Results Registry. Cancer Research and Treatment, 2018, 50, 324-334.	1.3	31
52	A lncRNA signature associated with tumor immune heterogeneity predicts distant metastasis in locoregionally advanced nasopharyngeal carcinoma. Nature Communications, 2022, 13, .	5.8	31
53	Radiotherapy with neoadjuvant chemotherapy versus concurrent chemoradiotherapy for ascending-type nasopharyngeal carcinoma: a retrospective comparison of toxicity and prognosis. Chinese Journal of Cancer, 2017, 36, 26.	4.9	30
54	Investigation of the feasibility of elective irradiation to neck level Ib using intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma: a retrospective analysis. BMC Cancer, 2015, 15, 709.	1.1	29

#	Article	IF	CITATIONS
55	Optimizing the induction chemotherapy regimen for patients with locoregionally advanced nasopharyngeal Carcinoma: A big-data intelligence platform-based analysis. Oral Oncology, 2018, 79, 40-46.	0.8	28
56	Circulating EBV DNA, Globulin and Nodal Size Predict Distant Metastasis after Intensity-Modulated Radiotherapy in Stage II Nasopharyngeal Carcinoma. Journal of Cancer, 2016, 7, 664-670.	1.2	27
57	Is replacement of the supraclavicular fossa with the lower level classification based on magnetic resonance imaging beneficial in nasopharyngeal carcinoma?. Radiotherapy and Oncology, 2014, 113, 108-114.	0.3	26
58	Impact of marital status at diagnosis on survival and its change over time between 1973 and 2012 in patients with nasopharyngeal carcinoma: a propensity scoreâ€matched analysis. Cancer Medicine, 2017, 6, 3040-3051.	1.3	26
59	A network meta-analysis in comparing prophylactic treatments of radiotherapy-induced oral mucositis for patients with head and neck cancers receiving radiotherapy. Oral Oncology, 2017, 75, 89-94.	0.8	26
60	Pan ancer genomic analyses reveal prognostic and immunogenic features of the tumor melatonergic microenvironment across 14 solid cancer types. Journal of Pineal Research, 2019, 66, e12557.	3.4	26
61	Induction Chemotherapy Improved Long-term Outcomes of Patients with Locoregionally Advanced Nasopharyngeal Carcinoma: A Propensity Matched Analysis of 5-year Survival Outcomes in the Era of Intensity-modulated Radiotherapy. Journal of Cancer, 2017, 8, 371-377.	1.2	25
62	Significant value of 18F-FDG-PET/CT in diagnosing small cervical lymph node metastases in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy. Chinese Journal of Cancer, 2017, 36, 95.	4.9	25
63	Prognostic value of parapharyngeal extension in nasopharyngeal carcinoma treated with intensity modulated radiotherapy. Radiotherapy and Oncology, 2014, 110, 404-408.	0.3	24
64	Surrogate endpoints for overall survival in combined chemotherapy and radiotherapy trials in nasopharyngeal carcinoma: Meta-analysis of randomised controlled trials. Radiotherapy and Oncology, 2015, 116, 157-166.	0.3	24
65	Prognostic implications of dynamic serum lactate dehydrogenase assessments in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy. Scientific Reports, 2016, 6, 22326.	1.6	24
66	Selection and Validation of Induction Chemotherapy Beneficiaries Among Patients With T3N0, T3N1, T4N0 Nasopharyngeal Carcinoma Using Epstein-Barr Virus DNA: A Joint Analysis of Real-World and Clinical Trial Data. Frontiers in Oncology, 2019, 9, 1343.	1.3	24
67	Nasopharyngeal carcinoma treated with intensity-modulated radiotherapy: clinical outcomes and patterns of failure among subsets of 8th AJCC stage IVa. European Radiology, 2020, 30, 816-822.	2.3	23
68	The Cumulative Cisplatin Dose Affects the Long-Term Survival Outcomes of Patients with Nasopharyngeal Carcinoma Receiving Concurrent Chemoradiotherapy. Scientific Reports, 2016, 6, 24332.	1.6	22
69	Prognostic value of nutritional risk screening 2002 scale in nasopharyngeal carcinoma: A largeâ€scale cohort study. Cancer Science, 2018, 109, 1909-1919.	1.7	22
70	Comorbidity predicts poor prognosis in nasopharyngeal carcinoma: Development and validation of a predictive score model. Radiotherapy and Oncology, 2015, 114, 249-256.	0.3	21
71	Publication status of contemporary oncology randomised controlled trials worldwide. European Journal of Cancer, 2016, 66, 17-25.	1.3	21
72	Prognostic value of immune score in nasopharyngeal carcinoma using digital pathology. , 2020, 8, e000334.		21

#	Article	IF	CITATIONS
73	Prognostic value of wait time in nasopharyngeal carcinoma treated with intensity modulated radiotherapy: a propensitymatched analysis. Oncotarget, 2016, 7, 14973-14982.	0.8	21
74	Clinical Outcomes of Volume-Modulated Arc Therapy in 205 Patients with Nasopharyngeal Carcinoma: An Analysis of Survival and Treatment Toxicities. PLoS ONE, 2015, 10, e0129679.	1.1	20
75	Combined prognostic value of pretreatment anemia and cervical node necrosis in patients with nasopharyngeal carcinoma receiving intensityâ€modulated radiotherapy: A largeâ€scale retrospective study. Cancer Medicine, 2017, 6, 2822-2831.	1.3	20
76	Role of sequential chemoradiotherapy in stage II and low-risk stage III–IV nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy: A propensity score-matched analysis. Oral Oncology, 2018, 78, 37-45.	0.8	20
77	Thyroid doseâ€volume thresholds for the risk of radiationâ€related hypothyroidism in nasopharyngeal carcinoma treated with intensityâ€modulated radiotherapy—A singleâ€institution study. Cancer Medicine, 2019, 8, 6887-6893.	1.3	19
78	Initial Hyperleukocytosis and Neutrophilia in Nasopharyngeal Carcinoma: Incidence and Prognostic Impact. PLoS ONE, 2015, 10, e0136752.	1.1	19
79	Risk stratification based on change in plasma Epstein-Barr virus DNA load after treatment in nasopharyngeal carcinoma. Oncotarget, 2016, 7, 9576-9585.	0.8	19
80	Anti-EGFR targeted therapy delivered before versus during radiotherapy in locoregionally advanced nasopharyngeal carcinoma: a big-data, intelligence platform-based analysis. BMC Cancer, 2018, 18, 323.	1.1	18
81	Relationship between pretreatment concentration of plasma Epsteinâ€Barr virus DNA and tumor burden in nasopharyngeal carcinoma: An updated interpretation. Cancer Medicine, 2018, 7, 5988-5998.	1.3	18
82	Establishment of an integrated model incorporating standardised uptake value and N-classification for predicting metastasis in nasopharyngeal carcinoma. Oncotarget, 2016, 7, 13612-13620.	0.8	18
83	A Gene-Expression Predictor for Efficacy of Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma. Journal of the National Cancer Institute, 2021, 113, 471-480.	3.0	17
84	Patterns of EBV-positive cervical lymph node involvement in head and neck cancer and implications for the management of nasopharyngeal carcinoma T0 classification. Oral Oncology, 2019, 91, 7-12.	0.8	16
85	Optimizing the cumulative cisplatin dose during radiotherapy in nasopharyngeal carcinoma: Dose-effect analysis for a large cohort. Oral Oncology, 2019, 89, 102-106.	0.8	16
86	Normal tissue complication probability (NTCP) models for predicting temporal lobe injury after intensity-modulated radiotherapy in nasopharyngeal carcinoma: A large registry-based retrospective study from China. Radiotherapy and Oncology, 2021, 157, 99-105.	0.3	16
87	Critical Evaluation of the Quality and Recommendations of Clinical Practice Guidelines for Nasopharyngeal Carcinoma. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 336-344.	2.3	15
88	Dose-volume factors associated with ear disorders following intensity modulated radiotherapy in nasopharyngeal carcinoma. Scientific Reports, 2015, 5, 13525.	1.6	14
89	Comparison of the treatment outcomes of intensity-modulated radiotherapy and two-dimensional conventional radiotherapy in nasopharyngeal carcinoma patients with parapharyngeal space extension. Radiotherapy and Oncology, 2015, 116, 167-173.	0.3	14
90	Plasma protein-based signature predicts distant metastasis and induction chemotherapy benefit in Nasopharyngeal Carcinoma. Theranostics, 2020, 10, 9767-9778.	4.6	14

#	Article	IF	CITATIONS
91	Induction versus adjuvant chemotherapy combined with concurrent chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma: A propensity score-matched analysis. Oral Oncology, 2020, 105, 104686.	0.8	14
92	An immuneâ€related sevenâ€lncRNA signature for head and neck squamous cell carcinoma. Cancer Medicine, 2021, 10, 2268-2285.	1.3	14
93	Leucopenia and treatment efficacy in advanced nasopharyngeal carcinoma. BMC Cancer, 2015, 15, 429.	1.1	13
94	Anal adenocarcinoma requires prophylactic inguinal nodal treatment: Results from a single Chinese institution. Journal of Cancer, 2017, 8, 1097-1102.	1.2	13
95	Effect of prior cancer on trial eligibility and treatment outcomes in nasopharyngeal carcinoma: Implications for clinical trial accrual. Oral Oncology, 2019, 90, 23-29.	0.8	13
96	A New Model for Predicting Hypothyroidism After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 551255.	1.3	13
97	A Nomogram Based on Serum Biomarkers and Clinical Characteristics to Predict Survival in Patients With Non-Metastatic Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 594363.	1.3	13
98	Friend Leukemia Virus Integration 1 Expression Has Prognostic Significance in Nasopharyngeal Carcinoma. Translational Oncology, 2014, 7, 493-502.	1.7	12
99	Dosimetric benefit to organs at risk following margin reductions in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy. Chinese Journal of Cancer, 2015, 34, 189-97.	4.9	12
100	CXCL12 genetic variants as prognostic markers in nasopharyngeal carcinoma. OncoTargets and Therapy, 2015, 8, 2835.	1.0	12
101	Combining tumor response and personalized risk assessment: Potential for adaptation of concurrent chemotherapy in locoregionally advanced nasopharyngeal carcinoma in the intensity-modulated radiotherapy era. Radiotherapy and Oncology, 2021, 155, 56-64.	0.3	12
102	The Landscape of Clinical Trials Evaluating the Theranostic Role of PET Imaging in Oncology: Insights from an Analysis of ClinicalTrials.gov Database. Theranostics, 2017, 7, 390-399.	4.6	11
103	Antiâ€epidermal growth factor receptor therapy concurrently with induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma. Cancer Science, 2018, 109, 1609-1616.	1.7	11
104	Feasibility of ipsilateral lower neck sparing irradiation for unilateral or bilateral neck node-negative nasopharyngeal carcinoma: systemic review and meta-analysis of 2, 521 patients. Radiation Oncology, 2018, 13, 141.	1.2	11
105	The development and external validation of simplified T category classification for nasopharyngeal carcinoma to improve the prognostic value in the intensityâ€modulated radiotherapy era. Cancer Medicine, 2019, 8, 2213-2222.	1.3	11
106	Prognostic value of MRIâ€determined cervical lymph node size in nasopharyngeal carcinoma. Cancer Medicine, 2020, 9, 7100-7106.	1.3	11
107	Prognostic value of parotid lymph node metastasis in patients with nasopharyngeal carcinoma receiving intensity-modulated radiotherapy. Scientific Reports, 2015, 5, 13919.	1.6	10
108	Significant Prognostic Impact of Chemoradiotherapy-Induced Hemoglobin Decrease on Treatment Outcomes of Nasopharyngeal Carcinoma. Journal of Cancer, 2015, 6, 502-510.	1.2	10

#	Article	IF	CITATIONS
109	Refining the Role of Lymph Node Biopsy in Survival for Patients with Nasopharyngeal Carcinoma: Population-Based Study from the Surveillance Epidemiology and End-Results Registry. Annals of Surgical Oncology, 2017, 24, 2580-2587.	0.7	10
110	Prognostic impact of family history of cancer in Southern Chinese patients with esophageal squamous cell cancer. Journal of Cancer, 2019, 10, 1349-1357.	1.2	10
111	Clinical treatment considerations in the intensity-modulated radiotherapy era for patients with NO-category nasopharyngeal carcinoma and enlarged neck lymph nodes. Chinese Journal of Cancer, 2017, 36, 32.	4.9	9
112	Cigarette smoking complements the prognostic value of baseline plasma Epstein-Barr virus deoxyribonucleic acid in patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy: a large-scale retrospective cohort study. Oncotarget, 2016, 7, 16806-16817.	0.8	9
113	Protein C receptor maintains cancer stem cell properties via activating lipid synthesis in nasopharyngeal carcinoma. Signal Transduction and Targeted Therapy, 2022, 7, 46.	7.1	9
114	Use of pretreatment serum uric acid level to predict metastasis in locally advanced nasopharyngeal carcinoma. Head and Neck, 2017, 39, 492-497.	0.9	8
115	Cost-Effectiveness Analysis of Routine Magnetic Resonance Imaging in the Follow-Up of Patients With Nasopharyngeal Carcinoma After Intensity Modulated Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1382-1391.	0.4	8
116	Neoadjuvant and Concurrent Chemotherapy Have Varied Impacts on the Prognosis of Patients with the Ascending and Descending Types of Nasopharyngeal Carcinoma Treated with Intensity-Modulated Radiotherapy. PLoS ONE, 2016, 11, e0161878.	1.1	8
117	Neutropenia during the First Cycle of Induction Chemotherapy Is Prognostic for Poor Survival in Locoregionally Advanced Nasopharyngeal Carcinoma: A Real-World Study in an Endemic Area. Cancer Research and Treatment, 2018, 50, 777-790.	1.3	8
118	Prognostic value of Diabetes in Patients with Nasopharyngeal Carcinoma Treated with Intensity-Modulated Radiation Therapy. Scientific Reports, 2016, 6, 22200.	1.6	7
119	Evidence Underlying Recommendations and Payments from Industry to Authors of the National Comprehensive Cancer Network Guidelines. Oncologist, 2019, 24, 498-504.	1.9	7
120	Development and validation of a webâ€based calculator to predict individualized conditional risk of siteâ€specific recurrence in nasopharyngeal carcinoma: Analysis of 10,058 endemic cases. Cancer Communications, 2021, 41, 37-50.	3.7	7
121	Diabetes, Prediabetes and the Survival of Nasopharyngeal Carcinoma: A Study of 5,860 Patients. PLoS ONE, 2014, 9, e111073.	1.1	7
122	Identification of surrogate endpoints in patients with locoregionally advanced nasopharyngeal carcinoma receiving neoadjuvant chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone. BMC Cancer, 2015, 15, 930.	1.1	6
123	Decreased Overall and Cancer-Specific Mortality with Neoadjuvant Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma Treated by Intensity-modulated Radiotherapy: Multivariate Competing Risk Analysis. Journal of Cancer, 2017, 8, 2587-2594.	1.2	6
124	Evaluation of the National Comprehensive Cancer Network and European Society for Medical Oncology Nasopharyngeal Carcinoma Surveillance Guidelines. Frontiers in Oncology, 2020, 10, 119.	1.3	6
125	Evolving landscape and academic attitudes toward the controversies of global immunoâ€oncology trials. International Journal of Cancer, 2021, 149, 108-118.	2.3	5
126	Epstein-Barr virus microRNA BART10-3p promotes dedifferentiation and proliferation of nasopharyngeal carcinoma by targeting ALK7. Experimental Biology and Medicine, 2021, 246, 2618-2629.	1.1	5

#	Article	IF	CITATIONS
127	Implication of comorbidity on the initiation of chemotherapy and survival outcomes in patients with locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2017, 8, 10594-10601.	0.8	5
128	Incidence of and Risk Factors for Mastoiditis after Intensity Modulated Radiotherapy in Nasopharyngeal Carcinoma. PLoS ONE, 2015, 10, e0131284.	1.1	4
129	Potential surrogate endpoints for overall survival in locoregionally advanced nasopharyngeal carcinoma: an analysis of a phase III randomized trial. Scientific Reports, 2015, 5, 12502.	1.6	4
130	Primary tumor inflammation in gross tumor volume as a prognostic factor for nasopharyngeal carcinoma patients. Oncotarget, 2016, 7, 14963-14972.	0.8	4
131	Necrosis in a Biomarker-driven, Phase 2 Trial of Adjuvant Apatinib in Patients of Nasopharyngeal Carcinoma with Residual Epstein–Barr Virus DNA after Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2022, , .	0.4	4
132	The evolution of the nasopharyngeal carcinoma staging system over a 10-year period: implications for future revisions. Chinese Medical Journal, 2020, 133, 2044-2053.	0.9	3
133	Prognostic value of radiation interruption in different periods for nasopharyngeal carcinoma patients in the intensityâ€modulated radiation therapy era. Cancer Medicine, 2021, 10, 143-155.	1.3	3
134	Nomogram-aided individual induction chemotherapy regimen selection in advanced nasopharyngeal carcinoma. Oral Oncology, 2021, 122, 105555.	0.8	3
135	The immune modulation effects of gemcitabine plus cisplatin induction chemotherapy in nasopharyngeal carcinoma. Cancer Medicine, 2022, , .	1.3	3
136	Validity and reliability of the simplified Chinese patient-reported outcomes version of the common terminology criteria for adverse events. BMC Cancer, 2021, 21, 860.	1.1	2
137	Radiotherapy interruption due to holidays adversely affects the survival of patients with nasopharyngeal carcinoma: a joint analysis based on large-scale retrospective data and clinical trials. Radiation Oncology, 2022, 17, 36.	1.2	2
138	New parameters of the 8th edition AJCC/UICC T category in nasopharyngeal carcinoma: Cervical vertebrae invasion and parotid gland invasion. Clinical and Translational Medicine, 2020, 10, e202.	1.7	1
139	Liquid biopsy posttreatment surveillance in endemic nasopharyngeal carcinoma: a cost-effective strategy to integrate circulating cell-free Epstein-Barr virus DNA. BMC Medicine, 2021, 19, 193.	2.3	1
140	Expression Profiles and Prognostic Value of Multiple Inhibitory Checkpoints in Head and Neck Lymphoepithelioma-Like Carcinoma. Frontiers in Immunology, 2022, 13, 818411.	2.2	1
141	Long-Term Evaluation and Normal Tissue Complication Probability (NTCP) Models for Predicting Radiation-Induced Optic Neuropathy after Intensity-Modulated Radiation Therapy (IMRT) for Nasopharyngeal Carcinoma: A Large Retrospective Study in China. Journal of Oncology, 2022, 2022, 1-10.	0.6	1
142	Patient- and treatment-related risk factors associated with neck muscle spasm in nasopharyngeal carcinoma patients after intensity-modulated radiotherapy. BMC Cancer, 2017, 17, 788.	1.1	0
143	Disparities in positive results and dissemination of randomized controlled trials in immuno-oncology. International Reviews of Immunology, 0, , 1-10.	1.5	0