Sebastian Pons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7672904/publications.pdf

Version: 2024-02-01

117453 182168 4,771 55 34 51 citations h-index g-index papers 61 61 61 5460 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Disruption of IRS-2 causes type 2 diabetes in mice. Nature, 1998, 391, 900-904.	13.7	1,607
2	Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse Journal of Clinical Investigation, 1997, 100, 3164-3172.	3.9	257
3	Localization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain. Brain Research, 1991, 560, 167-174.	1.1	170
4	Calmodulin Activates Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 1997, 272, 28183-28186.	1.6	148
5	The IRS-2 Gene on Murine Chromosome 8 Encodes a Unique Signaling Adapter for Insulin and Cytokine Action. Molecular Endocrinology, 1997, 11, 251-262.	3.7	133
6	Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development (Cambridge), 2004, 131, 3159-3168.	1.2	130
7	Probucol Increases Glutathione Peroxidase-1 Activity and Displays Long-Lasting Protection against Methylmercury Toxicity in Cerebellar Granule Cells. Toxicological Sciences, 2009, 112, 416-426.	1.4	125
8	The Fyn Tyrosine Kinase Binds Irs-1 and Forms a Distinct Signaling Complex during Insulin Stimulation. Journal of Biological Chemistry, 1996, 271, 10583-10587.	1.6	119
9	Â1-Integrins Are Critical for Cerebellar Granule Cell Precursor Proliferation. Journal of Neuroscience, 2004, 24, 3402-3412.	1.7	112
10	Janus Kinase-dependent Activation of Insulin Receptor Substrate 1 in Response to Interleukin-4, Oncostatin M, and the Interferons. Journal of Biological Chemistry, 1997, 272, 24183-24190.	1.6	110
11	The insulin-like growth factor I system in the rat cerebellum: Developmental regulation and role in neuronal survival and differentiation. Journal of Neuroscience Research, 1994, 39, 117-126.	1.3	106
12	Survival of Purkinje Cells in Cerebellar Cultures is Increased by Insulin-like Growth Factor I. European Journal of Neuroscience, 1992, 4, 864-869.	1.2	103
13	Insulin-like Growth Factor-I Stimulates Dephosphorylation of lκB through the Serine Phosphatase Calcineurin (Protein Phosphatase 2B). Journal of Biological Chemistry, 2000, 275, 38620-38625.	1.6	86
14	The 60 kDa Insulin Receptor Substrate Functions Like an IRS Protein (pp60IRS3) in Adipose Cells. Biochemistry, 1997, 36, 8304-8310.	1.2	83
15	Estradiol promotes cell shape changes and glial fibrillary acidic protein redistribution in hypothalamic astrocytes in vitro: A neuronal-mediated effect. Clia, 1992, 6, 180-187.	2.5	82
16	Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base. Journal of Cell Science, 2010, 123, 62-69.	1.2	81
17	Blockade of cannabinoid CB1 receptor function protects against inâ€fvivo disseminating brain damage following NMDA-induced excitotoxicity. Journal of Neurochemistry, 2002, 82, 154-158.	2.1	76
18	Estradiol Modulates Insulin-Like Growth Factor I Receptors and Binding Proteins in Neurons from the Hypothalamus. Journal of Neuroendocrinology, 1993, 5, 267-271.	1.2	67

#	Article	IF	Citations
19	IRS-2 Deficiency Impairs NMDA Receptor-Dependent Long-term Potentiation. Cerebral Cortex, 2012, 22, 1717-1727.	1.6	66
20	Insulin-induced Up-regulated Uncoupling Protein-1 Expression Is Mediated by Insulin Receptor Substrate 1 through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway in Fetal Brown Adipocytes. Journal of Biological Chemistry, 2003, 278, 10221-10231.	1.6	59
21	Bone Morphogenetic Protein 2 Opposes Shh-mediated Proliferation in Cerebellar Granule Cells through a TIEG-1-based Regulation of Nmyc. Journal of Biological Chemistry, 2007, 282, 37170-37180.	1.6	59
22	Heterologous Pleckstrin Homology Domains Do Not Couple IRS-1 to the Insulin Receptor. Journal of Biological Chemistry, 1997, 272, 27716-27721.	1.6	57
23	In vivo modulation of 5-hydroxytryptamine release in mouse prefrontal cortex by local 5-HT2A receptors: effect of antipsychotic drugs. European Journal of Neuroscience, 2003, 18, 1235-1246.	1.2	57
24	Interaction of p59fynwith Interferon-Activated Jak Kinases. Biochemical and Biophysical Research Communications, 1997, 235, 83-88.	1.0	56
25	A specific increased expression of insulin receptor substrate 2 in pancreatic beta-cell lines is involved in mediating serum-stimulated beta-cell growth. Diabetes, 1998, 47, 1074-1085.	0.3	55
26	Insulin Receptor Substrate (IRS) Proteins IRS-1 and IRS-2 Differential Signaling in the Insulin/Insulin-Like Growth Factor-I Pathways in Fetal Brown Adipocytes. Molecular Endocrinology, 1998, 12, 688-697.	3.7	53
27	Glutamate excitotoxicity attenuates insulin-like growth factor-i prosurvival signaling. Molecular and Cellular Neurosciences, 2003, 24, 1027-1037.	1.0	43
28	Ciliary Adenylyl Cyclases control the Hedgehog pathway. Journal of Cell Science, 2015, 128, 2928-37.	1.2	43
29	Manipulating midbrain dopamine neurons and reward-related behaviors with light-controllable nicotinic acetylcholine receptors. ELife, 2018, 7, .	2.8	43
30	Sonic Hedgehog-induced Proliferation Requires Specific GÎ $_\pm$ Inhibitory Proteins. Journal of Biological Chemistry, 2011, 286, 8067-8074.	1.6	42
31	Climbing fiber deafferentation reduces insulin-like growth factor I (IGF-I) content in cerebellum. Brain Research, 1991, 564, 348-351.	1.1	39
32	Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by DACT1/2. Development (Cambridge), 2016, 143, 2194-205.	1,2	39
33	Ontogeny of insulin-like growth factor I, its receptor, and its binding proteins in the rat hypothalamus. Developmental Brain Research, 1991, 62, 169-175.	2.1	37
34	Insulin-like growth factor I potentiates kainate receptors through a phosphatidylinositol 3-kinase dependent pathway. NeuroReport, 2001, 12, 1293-1296.	0.6	37
35	Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death and Differentiation, 2012, 19, 209-219.	5.0	37
36	Association of Insulin Receptor Substrate 1 (IRS-1) Y895 with Grb-2 Mediates the Insulin Signaling Involved in IRS-1-Deficient Brown Adipocyte Mitogenesis. Molecular and Cellular Biology, 2001, 21, 2269-2280.	1.1	35

#	Article	IF	Citations
37	Chemical speciation of MeHg ⁺ and Hg ²⁺ in aqueous solution and HEK cells nuclei by means of DNA interacting fluorogenic probes. Chemical Science, 2015, 6, 3757-3764.	3.7	31
38	MicroRNA 22 Regulates Cell Cycle Length in Cerebellar Granular Neuron Precursors. Molecular and Cellular Biology, 2013, 33, 2706-2717.	1.1	29
39	Smad2 and Smad3 cooperate and antagonize simultaneously in vertebrate neurogenesis. Journal of Cell Science, 2013, 126, 5335-43.	1.2	27
40	Sustained Wnt/ \hat{l}^2 -catenin signalling causes neuroepithelial aberrations through the accumulation of aPKC at the apical pole. Nature Communications, 2014, 5, 4168.	5.8	27
41	Phosphatidylinositol-3-OH kinase regulatory subunits are differentially expressed during development of the rat cerebellum. Journal of Neurobiology, 2001, 47, 39-50.	3.7	25
42	E proteins sharpen neurogenesis by modulating proneural bHLH transcription factors $\hat{a} \in \mathbb{T}^M$ activity in an E-box-dependent manner. ELife, 2018, 7, .	2.8	25
43	Insulin Receptor Substrate (IRS) Proteins IRS-1 and IRS-2 Differential Signaling in the Insulin/Insulin-Like Growth Factor-I Pathways in Fetal Brown Adipocytes. , 0, .		21
44	Effect of Acute and Chronic Whole-Body Vibration Exercise on Serum Insulin-Like Growth Factor–1 Levels in Women with Fibromyalgia. Journal of Alternative and Complementary Medicine, 2009, 15, 573-578.	2.1	19
45	Expression of the proneural gene encoding Mash1 suppresses MYCN mitotic activity. Journal of Cell Science, 2009, 122, 595-599.	1.2	16
46	Interaction of Wild Type and Dominant-Negative p55PIK Regulatory Subunit of Phosphatidylinositol 3-Kinase with Insulin-Like Growth Factor-1 Signaling Proteins. Molecular Endocrinology, 1997, 11, 1911-1923.	3.7	13
47	PI3K regulates intraepithelial cell positioning through Rho GTP-ases in the developing neural tube. Developmental Biology, 2018, 436, 42-54.	0.9	12
48	Dbnl and \hat{l}^2 -catenin promote pro-N-cadherin processing to maintain apico-basal polarity. Journal of Cell Biology, 2021, 220, .	2.3	8
49	Influence of core extension and side chain nature in targeting G-quadruplex structures with perylene monoimide derivatives. Bioorganic Chemistry, 2021, 108, 104660.	2.0	7
50	The Role of Smad2 in Adult Neuroplasticity as Seen through Hippocampal-Dependent Spatial Learning/Memory and Neurogenesis. Journal of Neuroscience, 2021, 41, 6836-6849.	1.7	7
51	Pathway-specific effects of ADSL deficiency on neurodevelopment. ELife, 2022, 11, .	2.8	7
52	Introducing Cloned Genes into Cultured Neurons Providing Novel In vitro Models for Neuropathology and Neurotoxicity Studies. Neuromethods, 2011, 56, 185-222.	0.2	1
53	Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base. Development (Cambridge), 2010, 137, e1-e1.	1.2	0
54	Smad2 and Smad3 cooperate and antagonize simultaneously in vertebrate neurogenesis. Development (Cambridge), 2014, 141, e107-e107.	1.2	0

SEBASTIAN PONS

#	Article	IF	CITATIONS
55	SAICAr-Dependent and Independent Effects of ADSL Deficiency on Neurodevelopment. SSRN Electronic Journal, 0, , .	0.4	0