Mirian Yumie Nishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/767256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of Insulin-Like Growth Factor-II and Its Receptor in Pediatric and Adult Adrenocortical Tumors. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3524-3531.	1.8	149
2	<i>ARMC5</i> Mutations Are a Frequent Cause of Primary Macronodular Adrenal Hyperplasia. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1501-E1509.	1.8	120
3	Heterozygous Mutations in Natriuretic Peptide Receptor-B (<i>NPR2</i>) Gene as a Cause of Short Stature in Patients Initially Classified as Idiopathic Short Stature. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1636-E1644.	1.8	111
4	Androgen insensitivity syndrome: a review. Archives of Endocrinology and Metabolism, 2018, 62, 227-235.	0.3	100
5	Disorders of sex development: effect of molecular diagnostics. Nature Reviews Endocrinology, 2015, 11, 478-488.	4.3	81
6	Wide spectrum of NR5A1â€related phenotypes in 46,XY and 46,XX individuals. Birth Defects Research Part C: Embryo Today Reviews, 2016, 108, 309-320.	3.6	76
7	SHOX mutations in idiopathic short stature and Leri-Weill dyschondrosteosis: frequency and phenotypic variability. Clinical Endocrinology, 2006, 66, 061031010617004-???.	1.2	75
8	Steroidogenic Factor 1 Overexpression and Gene Amplification Are More Frequent in Adrenocortical Tumors from Children than from Adults. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1458-1462.	1.8	66
9	46,XY disorder of sex development (DSD) due to 17β-hydroxysteroid dehydrogenase type 3 deficiency. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 79-85.	1.2	66
10	A novel missense mutation (S18N) in the 5′ non-HMG box region of the SRY gene in a patient with partial gonadal dysgenesis and his normal male relatives. Human Genetics, 1998, 102, 213-215.	1.8	65
11	Mutations in the SRY, DAX1, SF1 and WNT4 genes in Brazilian sex-reversed patients. Brazilian Journal of Medical and Biological Research, 2004, 37, 145-150.	0.7	53
12	Familial Hyperestrogenism in Both Sexes: Clinical, Hormonal, and Molecular Studies of Two Siblings. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3027-3034.	1.8	52
13	Malignant testicular germ cell tumors in postpubertal individuals with androgen insensitivity: prevalence, pathology and relevance of single nucleotide polymorphism-based susceptibility profiling. Human Reproduction, 2017, 32, 2561-2573.	0.4	50
14	Detection of Y-specific sequences in 122 patients with Turner syndrome: Nested PCR is not a reliable method. American Journal of Medical Genetics Part A, 2002, 107, 299-305.	2.4	45
15	The Sitting Height/Height Ratio for Age in Healthy and Short Individuals and Its Potential Role in Selecting Short Children for <i>SHOX</i> Analysis. Hormone Research in Paediatrics, 2013, 80, 449-456.	0.8	45
16	The role of ARMC5 in human cell cultures from nodules of primary macronodular adrenocortical hyperplasia (PMAH). Molecular and Cellular Endocrinology, 2018, 460, 36-46.	1.6	38
17	Homozygous Inactivating Mutation in <i>NANOS3</i> in Two Sisters with Primary Ovarian Insufficiency. BioMed Research International, 2014, 2014, 1-8.	0.9	36
18	Genetic Disorders in Prenatal Onset Syndromic Short Stature Identified by Exome Sequencing. Journal of Pediatrics. 2019. 215. 192-198.	0.9	36

MIRIAN YUMIE NISHI

#	Article	IF	CITATIONS
19	Combined pituitary hormone deficiency (CPHD) due to a complete PROP1 deletion. Clinical Endocrinology, 2006, 65, 294-300.	1.2	35
20	Effectiveness of the Combined Recombinant Human Growth Hormone and Gonadotropin-Releasing Hormone Analog Therapy in Pubertal Patients with Short Stature due to <i>SHOX</i> Deficiency. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 328-332.	1.8	35
21	FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocrine Connections, 2015, 4, 100-107.	0.8	34
22	A Novel Missense Mutation, GLY424SER, in Brazilian Patients with 21-Hydroxylase Deficiency. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 2870-2872.	1.8	31
23	Two rare loss-of-function variants in the STAG3 gene leading to primary ovarian insufficiency. European Journal of Medical Genetics, 2019, 62, 186-189.	0.7	30
24	Identification of the first homozygous 1â€bp deletion in <i>GDF9</i> gene leading to primary ovarian insufficiency by using targeted massively parallel sequencing. Clinical Genetics, 2018, 93, 408-411.	1.0	29
25	Exome Sequencing Reveals the POLR3H Gene as a Novel Cause of Primary Ovarian Insufficiency. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2827-2841.	1.8	28
26	Pitfalls in hormonal diagnosis of 17-beta hydroxysteroid dehydrogenase III deficiency. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 623-8.	0.4	26
27	A Novel Homozygous Missense <i>FSHR</i> Variant Associated with Hypergonadotropic Hypogonadism in Two Siblings from a Brazilian Family. Sexual Development, 2017, 11, 137-142.	1.1	26
28	Genetic Evidence of the Association of DEAH-Box Helicase 37 Defects With 46,XY Gonadal Dysgenesis Spectrum. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5923-5934.	1.8	26
29	A 46,XX testicular disorder of sex development caused by a Wilms' tumour Factorâ€1 (<i>WT1</i>) pathogenic variant. Clinical Genetics, 2019, 95, 172-176.	1.0	24
30	Usefulness of MLPA in the detection of SHOX deletions. European Journal of Medical Genetics, 2010, 53, 234-238.	0.7	23
31	Combined pituitary hormone deficiency caused by PROP1 mutations: update 20 years post-discovery. Archives of Endocrinology and Metabolism, 2019, 63, 167-174.	0.3	23
32	Sterol O-Acyl Transferase 1 as a Prognostic Marker of Adrenocortical Carcinoma. Cancers, 2020, 12, 247.	1.7	22
33	Analysis of anti-MÃ1⁄4llerian hormone (AMH) and its receptor (AMHR2) genes in patients with persistent MÃ1⁄4llerian duct syndrome. Arquivos Brasileiros De Endocrinologia E Metabologia, 2012, 56, 473-478.	1.3	21
34	Mutations in MAP3K1 that cause 46,XY disorders of sex development disrupt distinct structural domains in the protein. Human Molecular Genetics, 2019, 28, 1620-1628.	1.4	21
35	Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency. PLoS ONE, 2020, 15, e0240795.	1.1	21
36	GH-Releasing Hormone Receptor Gene: A Novel Splice-Disrupting Mutation and Study of Founder Effects. Hormone Research in Paediatrics, 2012, 78, 165-172.	0.8	18

MIRIAN YUMIE NISHI

#	Article	IF	CITATIONS
37	A novel homozygous 1-bp deletion in the NOBOX gene in two Brazilian sisters with primary ovarian failure. Endocrine, 2017, 58, 442-447.	1.1	17
38	A recurrent synonymous mutation in the human androgen receptor gene causing complete androgen insensitivity syndrome. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 14-16.	1.2	16
39	SELAdb: A database of exonic variants in a Brazilian population referred to a quaternary medical center in São Paulo. Clinics, 2020, 75, e1913.	0.6	15
40	A New Insight into the Surgical Treatment of Primary Macronodular Adrenal Hyperplasia. Journal of the Endocrine Society, 2020, 4, bvaa083.	0.1	14
41	Molecular analysis of brazilian patients with combined pituitary hormone deficiency and orthotopic posterior pituitary lobe reveals eight different <i><scp>PROP</scp>1</i> alterations with three novel mutations. Clinical Endocrinology, 2017, 87, 725-732.	1.2	13
42	Longâ€ŧerm outcomes and molecular analysis of a large cohort of patients with 46, <scp>XY</scp> disorder of sex development due to partial gonadal dysgenesis. Clinical Endocrinology, 2018, 89, 164-177.	1.2	13
43	ESR1 polymorphism (rs2234693) influences femoral bone mass in patients with Turner syndrome. Endocrine Connections, 2019, 8, 1513-1519.	0.8	12
44	A novel DAX1/NR0B1 mutation in a patient with adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Arquivos Brasileiros De Endocrinologia E Metabologia, 2012, 56, 496-500.	1.3	11
45	Amplification of the <i>Insulin-Like Growth Factor 1 Receptor</i> Gene Is a Rare Event in Adrenocortical Adenocarcinomas: Searching for Potential Mechanisms of Overexpression. BioMed Research International, 2014, 2014, 1-7.	0.9	11
46	Contribution of Clinical and Genetic Approaches for Diagnosing 209 Index Cases With 46,XY Differences of Sex Development. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1797-e1806.	1.8	11
47	Mobile DNA in Endocrinology: LINE-1 Retrotransposon Causing Partial Androgen Insensitivity Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 6385-6390.	1.8	10
48	Performance of mutation pathogenicity prediction tools on missense variants associated with 46,XY differences of sex development. Clinics, 2021, 76, e2052.	0.6	10
49	Cryptic intragenic deletion of the SHOX gene in a family with Léri-Weill dyschondrosteosis detected by Multiplex Ligation-Dependent Probe Amplification (MLPA). Arquivos Brasileiros De Endocrinologia E Metabologia, 2008, 52, 1382-1387.	1.3	9
50	Tall stature and poor breast development after estrogen replacement in a hypergonadotrophic hypogonadic patient with a 45,X/46,X,der(X) karyotype with SHOX gene overdosage. Arquivos Brasileiros De Endocrinologia E Metabologia, 2008, 52, 1282-1287.	1.3	9
51	Absence of inactivating mutations and deletions in the DMRT1 and FGF9 genes in a large cohort of 46,XY patients with gonadal dysgenesis. European Journal of Medical Genetics, 2012, 55, 690-694.	0.7	9
52	Partial androgen insensitivity syndrome due to somatic mosaicism of the androgen receptor. Journal of Pediatric Endocrinology and Metabolism, 2018, 31, 223-228.	0.4	9
53	Evaluation of <i>SHOX</i> defects in the era of nextâ€generation sequencing. Clinical Genetics, 2019, 96, 261-265.	1.0	9
54	A novel WT1 heterozygous nonsense mutation (p.K248X) causing a mild and slightly progressive nephropathy in a 46,XY patient with Denys–Drash syndrome. Pediatric Nephrology, 2011, 26, 1311-1315.	0.9	8

#	Article	IF	CITATIONS
55	Discordant Genotypic Sex and Phenotype Variations in Two Spanish Siblings with 17α-Hydroxylase/17,20-Lyase Deficiency Carrying the Most Prevalent Mutated <i> CYP17A1</i> Alleles of Brazilian Patients. Sexual Development, 2017, 11, 70-77.	1.1	8
56	Heterozygous Nonsense Mutation in the Androgen Receptor Gene Associated with Partial Androgen Insensitivity Syndrome in an Individual with 47,XXY Karyotype. Sexual Development, 2017, 11, 78-81.	1.1	8
57	Post-receptor IGF1 insensitivity restricted to the MAPK pathway in a Silver–Russell syndrome patient with hypomethylation at the imprinting control region on chromosome 11. European Journal of Endocrinology, 2012, 166, 543-550.	1.9	7
58	Allelic Variants of ARMC5 in Patients With Adrenal Incidentalomas and in Patients With Cushing's Syndrome Associated With Bilateral Adrenal Nodules. Frontiers in Endocrinology, 2020, 11, 36.	1.5	7
59	The Role of <i>SRY</i> Mutations in the Etiology of Gonadal Dysgenesis in Patients with 45,X/46,XY Disorder of Sex Development and Variants. Hormone Research in Paediatrics, 2011, 75, 26-31.	0.8	6
60	Mutation analysis of NANOS3 in Brazilian women with primary ovarian failure. Clinics, 2016, 71, 695-698.	0.6	6
61	Expression profiles of the glucose-dependent insulinotropic peptide receptor and LHCGR in sporadic adrenocortical tumors. Journal of Endocrinology, 2009, 200, 167-175.	1.2	5
62	Autosomal recessive form of isolated growth hormone deficiency is more frequent than the autosomal dominant form in a Brazilian cohort. Growth Hormone and IGF Research, 2014, 24, 180-186.	0.5	5
63	Good response to longâ€ŧerm therapy with growth hormone in a patient with 9p trisomy syndrome: A case report and review of the literature. American Journal of Medical Genetics, Part A, 2016, 170, 1046-1049.	0.7	5
64	WT1 Pathogenic Variants are Associated with a Broad Spectrum of Differences in Sex Development Phenotypes and Heterogeneous Progression of Renal Disease. Sexual Development, 2022, 16, 46-54.	1.1	5
65	Analysis of glucose-dependent insulinotropic peptide receptor (GIPR) and luteinizing hormone receptor (LHCGR) expression in human adrenocortical hyperplasia. Arquivos Brasileiros De Endocrinologia E Metabologia, 2009, 53, 326-331.	1.3	5
66	High Prevalence of Alterations in DNA Mismatch Repair Genes of Lynch Syndrome in Pediatric Patients with Adrenocortical Tumors Carrying a Germline Mutation on TP53. Cancers, 2020, 12, 621.	1.7	4
67	High-throughput Sequencing to Identify Monogenic Etiologies in a Preselected Polycystic Ovary Syndrome Cohort. Journal of the Endocrine Society, 2022, 6, .	0.1	4
68	Effects of Type 1 Insulin-Like Growth Factor Receptor Silencing in a Human Adrenocortical Cell Line. Hormone and Metabolic Research, 2016, 48, 484-488.	0.7	3
69	Variants in 46,XY DSD-Related Genes in Syndromic and Non-Syndromic Small for Gestational Age Children with Hypospadias. Sexual Development, 2022, 16, 27-33.	1.1	3
70	Reply to correspondence from Hall??Detection of Y-specific sequences in patients with Turner syndrome?. American Journal of Medical Genetics Part A, 2002, 113, 115-115.	2.4	2
71	Androgen receptor mRNA analysis from whole blood: a lowâ€cost strategy for detection of androgen receptor gene splicing defects. Clinical Genetics, 2018, 94, 489-490.	1.0	2
72	A Small Supernumerary Xp Marker Chromosome Including Genes <i>NR0B1</i> and <i>MAGEB</i> Causing Partial Gonadal Dysgenesis and Gonadoblastoma. Sexual Development, 2022, 16, 55-63.	1.1	1

MIRIAN YUMIE NISHI

#	Article	IF	CITATIONS
73	Y chromosome aberration in a patient with cloacal-bladder exstrophy-epispadias complex: an unusual finding. Arquivos Brasileiros De Endocrinologia E Metabologia, 2013, 57, 148-152.	1.3	0
74	46,XY DSD due to 17β-Hydroxysteroid Dehydrogenase 3 Deficiency. , 2014, , 191-197.		0
75	SAT-155 High Prevalence Alterations on DNA Mismatch Repair Genes Related to Lynch Syndrome in Pediatric Patients with Adrenocortical Tumor Carried of the Germline Mutation on TP53. Journal of the Endocrine Society, 2020, 4, .	0.1	0
76	Allelic Variants in Established Hypopituitarism Genes Expand Our Knowledge of the Phenotypic Spectrum. Genes, 2021, 12, 1128.	1.0	0
77	SUN-709 MiR-200c Expression Profiles in Plasma of 46,XY DSD Patients of Unknown Etiology. Journal of the Endocrine Society, 2020, 4, .	0.1	0
78	Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency. , 2020, 15, e0240795.		0
79	Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency. , 2020, 15, e0240795.		0
80	Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency. , 2020, 15, e0240795.		0
81	Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency. , 2020, 15, e0240795.		0