Longchuan Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7672077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design, Synthesis, and Biological Evaluation of Apcin-Based CDC20 Inhibitors. ACS Medicinal Chemistry Letters, 2022, 13, 188-195.	2.8	3
2	Mcl-1 levels critically impact the sensitivities of human colorectal cancer cells to APG-1252-M1, a novel Bcl-2/Bcl-XL dual inhibitor that induces Bax-dependent apoptosis. Neoplasia, 2022, 29, 100798.	5.3	5
3	Topography of transcriptionally active chromatin in glioblastoma. Science Advances, 2021, 7, .	10.3	19
4	SD-91 as A Potent and Selective STAT3 Degrader Capable of Achieving Complete and Long-Lasting Tumor Regression. ACS Medicinal Chemistry Letters, 2021, 12, 996-1004.	2.8	21
5	Discovery of CJ-2360 as a Potent and Orally Active Inhibitor of Anaplastic Lymphoma Kinase Capable of Achieving Complete Tumor Regression. Journal of Medicinal Chemistry, 2020, 63, 13994-14016.	6.4	11
6	A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression InÂVivo. Cancer Cell, 2019, 36, 498-511.e17.	16.8	364
7	Small-molecule PROTAC degraders of the Bromodomain and Extra Terminal (BET) proteins — A review. Drug Discovery Today: Technologies, 2019, 31, 43-51.	4.0	92
8	Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein. Journal of Medicinal Chemistry, 2019, 62, 11280-11300.	6.4	133
9	Discovery of a Small-Molecule Degrader of Bromodomain and Extra-Terminal (BET) Proteins with Picomolar Cellular Potencies and Capable of Achieving Tumor Regression. Journal of Medicinal Chemistry, 2018, 61, 462-481.	6.4	288
10	MCL-1 inhibition in cancer treatment. OncoTargets and Therapy, 2018, Volume 11, 7301-7314.	2.0	116
11	Discovery of QCA570 as an Exceptionally Potent and Efficacious Proteolysis Targeting Chimera (PROTAC) Degrader of the Bromodomain and Extra-Terminal (BET) Proteins Capable of Inducing Complete and Durable Tumor Regression. Journal of Medicinal Chemistry, 2018, 61, 6685-6704.	6.4	204
12	Targeted Degradation of BET Proteins in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 2476-2487.	0.9	173
13	Structure-Based Discovery of 4-(6-Methoxy-2-methyl-4-(quinolin-4-yl)-9 <i>H</i> -pyrimido[4,5- <i>b</i>]indol-7-yl)-3,5-dimethylisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor. Journal of Medicinal Chemistry. 2017, 60. 3887-3901.	6.4	36
14	Buried Hydrogen Bond Interactions Contribute to the High Potency of Complement Factor D Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 1092-1096.	2.8	15
15	Structure-Based Design of γ-Carboline Analogues as Potent and Specific BET Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 4927-4939.	6.4	89
16	Targeting Apoptosis Pathways for New Cancer Therapeutics. Annual Review of Medicine, 2014, 65, 139-155.	12.2	150
17	SAR405838: An Optimized Inhibitor of MDM2–p53 Interaction That Induces Complete and Durable Tumor Regression. Cancer Research, 2014, 74, 5855-5865.	0.9	261

18 Small-molecule SMAC mimetics as new cancer therapeutics. , 2014, 144, 82-95.

Longchuan Bai

#	Article	IF	CITATIONS
19	BM-1197: A Novel and Specific Bcl-2/Bcl-xL Inhibitor Inducing Complete and Long-Lasting Tumor Regression In Vivo. PLoS ONE, 2014, 9, e99404.	2.5	71
20	A Potent and Highly Efficacious Bcl-2/Bcl-xL Inhibitor. Journal of Medicinal Chemistry, 2013, 56, 3048-3067.	6.4	40
21	LRIG1 Modulates Cancer Cell Sensitivity to Smac Mimetics by Regulating TNFα Expression and Receptor Tyrosine Kinase Signaling. Cancer Research, 2012, 72, 1229-1238.	0.9	32
22	Reduced Pepsin A Processing of Sonic Hedgehog in Parietal Cells Precedes Gastric Atrophy and Transformation. Journal of Biological Chemistry, 2007, 282, 33265-33274.	3.4	58
23	ATM phosphorylates ZBP-89 at Ser202 to potentiate p21waf1 induction by butyrate. Biochemical and Biophysical Research Communications, 2007, 359, 817-821.	2.1	20
24	A role for CITED2, a CBP/p300 interacting protein, in colon cancer cell invasion. FEBS Letters, 2007, 581, 5904-5910.	2.8	47
25	Recruitment of Ataxia-Telangiectasia Mutated to the p21waf1 Promoter by ZBP-89 Plays a Role in Mucosal Protection. Gastroenterology, 2006, 131, 841-852.	1.3	23
26	Transcription factor ZBP-89 is required for STAT1 constitutive expression. Nucleic Acids Research, 2003, 31, 7264-7270.	14.5	30
27	Regulation of Epithelial Cell Growth by ZBP-89: Potential Relevance in Pancreatic Cancer. International Journal of Gastrointestinal Cancer, 2002, 31, 79-88.	0.4	21
28	Retinoic acid (RA) receptor transcriptional activation correlates with inhibition of 12-O-tetradecanoylphorbol- 13-acetate-induced ornithine decarboxylase (ODC) activity by retinoids: A potential role fortrans-RA-induced ZBP-89 in ODC inhibition. International Journal of Cancer, 2001, 91, 8-21.	5.1	19