Juwei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/767195/publications.pdf

Version: 2024-02-01

1040056 940533 21 250 9 16 citations h-index g-index papers 21 21 21 118 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Research on 3D MFL testing of wire rope based on empirical wavelet transform and SRCNN. Journal of Vibroengineering, 2022, 24, 779-792.	1.0	2
2	Modeling, simulation and experimental exploration of metal magnetic memory under weak magnetic excitation. SN Applied Sciences, 2022, 4, 1 .	2.9	4
3	The Broken Wires Identification of Wire Rope Based on Multilevel Filtering Method Using EEMD and Wavelet Analysis. Journal of Failure Analysis and Prevention, 2021, 21, 280-289.	0.9	9
4	Quantitative Nondestructive Testing of Steel Wire Rope Based on Optimized Support Vector Machine. Russian Journal of Nondestructive Testing, 2021, 57, 1008-1017.	0.9	3
5	A new quantitative non-destructive testing approach of broken wires for steel wire rope. International Journal of Applied Electromagnetics and Mechanics, 2020, 62, 415-431.	0.6	7
6	Application of Pseudo-color Image Feature-Level Fusion in Nondestructive Testing of Wire Ropes. Journal of Failure Analysis and Prevention, 2020, 20, 1541-1553.	0.9	5
7	Quantitative Nondestructive Testing of Broken Wires for Wire Rope Based on Magnetic and Infrared Information. Journal of Sensors, 2020, 2020, 1-14.	1.1	4
8	Quantitative Detection of Wire Rope Based on Three-Dimensional Magnetic Flux Leakage Color Imaging Technology. IEEE Access, 2020, 8, 104165-104174.	4.2	19
9	Obtaining Unfolded Image for Surface of Wire Rope Based on Image Processing and Splicing. Journal of Failure Analysis and Prevention, 2020, 20, 425-431.	0.9	3
10	Quantitative Nondestructive Testing of Wire Rope Using Image Super-Resolution Method and AdaBoost Classifier. Shock and Vibration, 2019, 2019, 1-13.	0.6	11
11	Quantitative Detection of Remanence in Broken Wire Rope Based on Adaptive Filtering and Elman Neural Network. Journal of Failure Analysis and Prevention, 2019, 19, 1264-1274.	0.9	5
12	Application of Variational Mode Decomposition and $\langle i \rangle k \langle i \rangle$ -Nearest Neighbor Algorithm in the Quantitative Nondestructive Testing of Wire Ropes. Shock and Vibration, 2019, 2019, 1-14.	0.6	11
13	Nondestructive Testing of Wire Ropes Based on Image Fusion of Leakage Flux and Visible Light. Journal of Failure Analysis and Prevention, 2019, 19, 551-560.	0.9	11
14	Quantitative nondestructive testing of wire rope based on pseudo-color image enhancement technology. Nondestructive Testing and Evaluation, 2019, 34, 221-242.	2.1	24
15	Quantitative Nondestructive Testing of Wire Ropes Based on Features Fusion of Magnetic Image and Infrared Image. Shock and Vibration, 2019, 2019, 1-15.	0.6	5
16	Evaluation of Composite Wire Ropes Using Unsaturated Magnetic Excitation and Reconstruction Image with Super-Resolution. Applied Sciences (Switzerland), 2018, 8, 767.	2.5	17
17	Recognition of Broken Wire Rope Based on Remanence using EEMD and Wavelet Methods. Sensors, 2018, 18, 1110.	3.8	26
18	Study of Unsaturated Magnetic Image Processing in Wire Rope Aplication. , 2017, , .		0

#	Article	IF	CITATION
19	Non-Destructive Detection of Wire Rope Discontinuities from Residual Magnetic Field Images Using the Hilbert-Huang Transform and Compressed Sensing. Sensors, 2017, 17, 608.	3.8	48
20	Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing. Sensors, 2016, 16, 1366.	3.8	31
21	A coverage algorithm based on D-S theory for directional sensor networks. International Journal of Distributed Sensor Networks, 2016, 12, 155014771666962.	2.2	5