Hidetaka Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7671919/publications.pdf Version: 2024-02-01

ΗΙΠΕΤΛΚΛ ΥΛΜΑΠΑ

#	Article	IF	CITATIONS
1	CO ₂ Capture by Tertiary Amine Absorbents: A Performance Comparison Study. Industrial & Engineering Chemistry Research, 2013, 52, 8323-8331.	1.8	380
2	Synthesis and selection of hindered new amine absorbents for CO2 capture. Energy Procedia, 2011, 4, 201-208.	1.8	131
3	Density Functional Theory Study on Carbon Dioxide Absorption into Aqueous Solutions of 2-Amino-2-methyl-1-propanol Using a Continuum Solvation Model. Journal of Physical Chemistry A, 2011, 115, 3079-3086.	1.1	95
4	Amine-based capture of CO2 for utilization and storage. Polymer Journal, 2021, 53, 93-102.	1.3	93
5	Prediction of the Basicity of Aqueous Amine Solutions and the Species Distribution in the Amineâ°'H ₂ 0â°'CO ₂ System Using the COSMO-RS Method. Industrial & Engineering Chemistry Research, 2010, 49, 2449-2455.	1.8	88
6	Large-Pore Mesostructured Silica Impregnated with Blended Amines for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 13810-13817.	1.8	75
7	CO2 solubility and species distribution in aqueous solutions of 2-(isopropylamino)ethanol and its structural isomers. International Journal of Greenhouse Gas Control, 2013, 17, 99-105.	2.3	61
8	Highly efficient post-combustion CO2 capture by low-temperature steam-aided vacuum swing adsorption using a novel polyamine-based solid sorbent. Chemical Engineering Journal, 2017, 307, 273-282.	6.6	55
9	Ab Initio Study of CO ₂ Capture Mechanisms in Aqueous Monoethanolamine: Reaction Pathways for the Direct Interconversion of Carbamate and Bicarbonate. Journal of Physical Chemistry A, 2013, 117, 9274-9281.	1.1	50
10	Development of hydrogen-selective triphenylmethoxysilane-derived silica membranes with tailored pore size by chemical vapor deposition. Journal of Membrane Science, 2016, 499, 28-35.	4.1	39
11	Quantitative Spectroscopic Study of Equilibrium in CO ₂ -Loaded Aqueous 2-(Ethylamino)ethanol Solutions. Industrial & Engineering Chemistry Research, 2014, 53, 1617-1623.	1.8	34
12	A screening study of alcohol solvents for alkanolamine-based CO2 capture. International Journal of Greenhouse Gas Control, 2020, 99, 103081.	2.3	34
13	Synthesis and characterization of new absorbents for CO2 capture. Energy Procedia, 2013, 37, 265-272.	1.8	32
14	Development of Novel Synthetic Amine Absorbents for CO2 Capture. Energy Procedia, 2014, 63, 572-579.	1.8	32
15	Computational investigation of carbon dioxide absorption in alkanolamine solutions. Journal of Molecular Modeling, 2013, 19, 4147-4153.	0.8	31
16	Sustainable Aspects of Ultimate Reduction of CO2 in the Steelmaking Process (COURSE50 Project), Part 2: CO2 Capture. Journal of Sustainable Metallurgy, 2016, 2, 209-215.	1.1	28
17	Enhanced adsorption of carbon dioxide on surface-modified mesoporous silica-supported tetraethylenepentamine: Role of surface chemical structure. Microporous and Mesoporous Materials, 2015, 215, 76-83.	2.2	26
18	Response Surface Optimization of Impregnation of Blended Amines into Mesoporous Silica for High-Performance CO ₂ Capture. Energy & Fuels, 2015, 29, 985-992.	2.5	26

#	Article	IF	CITATIONS
19	Advanced CO2 Capture Technologies. SpringerBriefs in Energy, 2019, , .	0.2	26
20	Enhancement of CO ₂ Adsorption/Desorption Properties of Solid Sorbents Using Tetraethylenepentamine/Diethanolamine Blends. ACS Omega, 2020, 5, 23533-23541.	1.6	26
21	Comparison of Solvation Effects on CO ₂ Capture with Aqueous Amine Solutions and Amine-Functionalized Ionic Liquids. Journal of Physical Chemistry B, 2016, 120, 10563-10568.	1.2	25
22	Oxidative Degradation of Tetraethylenepentamine-Impregnated Silica Sorbents for CO ₂ Capture. Energy & Fuels, 2019, 33, 3370-3379.	2.5	24
23	Bottom-up Synthesis of Defect-free Mixed-matrix Membranes by Using Polymer-grafted Metal–Organic Polyhedra. Chemistry Letters, 2019, 48, 597-600.	0.7	22
24	Ab Initio Study of CO2 Capture Mechanisms in Monoethanolamine Aqueous Solution: Reaction Pathways from Carbamate to Bicarbonate. Energy Procedia, 2013, 37, 400-406.	1.8	21
25	Exploring the Role of Imidazoles in Amine-Impregnated Mesoporous Silica for CO2 Capture. Industrial & Engineering Chemistry Research, 2018, 57, 2638-2644.	1.8	21
26	Quantum chemical analysis of carbon dioxide absorption into aqueous solutions of moderately hindered amines. Energy Procedia, 2011, 4, 133-139.	1.8	20
27	Development of Post-combustion CO2 Capture System Using Amine-impregnated Solid Sorbent. Energy Procedia, 2017, 114, 2304-2312.	1.8	20
28	Enhancement Mechanism of the CO ₂ Adsorption–Desorption Efficiency of Silica-Supported Tetraethylenepentamine by Chemical Modification of Amino Groups. ACS Sustainable Chemistry and Engineering, 2019, 7, 9574-9581.	3.2	20
29	Development of high-performance polymer membranes for CO2 separation by combining functionalities of polyvinyl alcohol (PVA) and sodium polyacrylate (PAANa). Journal of Polymer Research, 2019, 26, 1.	1.2	20
30	Effects of Amine Structures on Oxidative Degradation of Amine-Functionalized Adsorbents for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2021, 60, 4942-4950.	1.8	19
31	Development of Amine-impregnated Solid Sorbents for CO2 capture. Energy Procedia, 2014, 63, 2346-2350.	1.8	18
32	Ab Initio Study of CO2 Capture Mechanisms in Aqueous 2-Amino-2-methyl-1-propanol: Electronic and Steric Effects of Methyl Substituents on the Stability of Carbamate. Industrial & Engineering Chemistry Research, 2019, 58, 3549-3554.	1.8	17
33	CO ₂ Solubility Measurements and Modeling for Tertiary Diamines. Journal of Chemical & Engineering Data, 2015, 60, 814-820.	1.0	16
34	Carbon Dioxide Absorption using Solid Sorbents Incorporating Purified Components of Tetraethylenepentamine. Energy Technology, 2017, 5, 1186-1190.	1.8	15
35	Inhibitors of Oxidative Degradation of Polyamine-Modified Silica Sorbents for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 15598-15605.	1.8	14
36	Simulations of dielectric constants and viscosities of organic electrolytes by quantum mechanics and molecular dynamics. Journal of Molecular Liquids, 2020, 312, 113288.	2.3	14

#	Article	IF	CITATIONS
37	Effect of isopropyl-substituent introduction into tetraethylenepentamine-based solid sorbents for CO2 capture. Fuel, 2018, 214, 14-19.	3.4	13
38	Insights into the Dielectric-Heating-Enhanced Regeneration of CO ₂ -Rich Aqueous Amine Solutions. ACS Sustainable Chemistry and Engineering, 2020, 8, 13593-13599.	3.2	12
39	Dissociative ionization of ICl studied by ion imaging spectroscopy. Journal of Chemical Physics, 2002, 117, 1130-1138.	1.2	11
40	Development of Chemical CO2 Solvent For High Pressure CO2 Capture (2): Addition Effects of Non-aqueous Media on Amine Solutions. Energy Procedia, 2014, 63, 1963-1971.	1.8	10
41	Examination of Selection and Combination of Water-Absorbing Agent to Blend with Polyvinyl Alcohol (PVA) in Preparing CO2-Separation Membrane with High-Performance. Macromolecular Research, 2020, 28, 365-372.	1.0	10
42	Molecular Dynamics Simulation Study on CO ₂ Physical Absorption Mechanisms for Ethylene-Glycol-Based Solvents Using Free Energy Calculations. Industrial & Engineering Chemistry Research, 2016, 55, 8200-8206.	1.8	8
43	Optimal control of ultrafast selection. Journal of Chemical Physics, 2004, 120, 9446-9449.	1.2	7
44	Effects of the polymer composite composition and amine-based additives on the performance of a polymer composite CO2 separation membrane. Polymer Bulletin, 2021, 78, 513-528.	1.7	7
45	Selective transition to the closely-lying statesCs(7D3â^•2)andCs(7D5â^•2)by femtosecond laser pulses. Physical Review A, 2005, 72, .	1.0	6
46	Generation of Broadband Mid-Infrared Pulses by Noncollinear Difference Frequency Mixing. Japanese Journal of Applied Physics, 2007, 46, 226-228.	0.8	6
47	Effect of alcohol chain length on carbon dioxide absorption into aqueous solutions of alkanolamines. Energy Procedia, 2013, 37, 499-504.	1.8	6
48	Modeling of CO ₂ Solubility in Tertiary Amine Solvents Using p <i>K</i> _a . Journal of Chemical & Engineering Data, 2016, 61, 2144-2148.	1.0	6
49	CO 2 â€facilitated transport membranes prepared by blending polyvinyl alcohol and various waterâ€absorbing agents. Journal of Applied Polymer Science, 2021, 138, 50191.	1.3	6
50	Photodissociation dynamics of CH3CFCl2 and CDCl3 at 205–209nm. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 78-85.	2.0	5
51	Potential of Amine-based Solvents for Energy-saving CO ₂ Capture from a Coal-fired Power Plant. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2016, 95, 1133-1141.	0.2	5
52	Results of RITE's Advanced Liquid Absorbents Develop for Low Temperature CO2 Capture. Energy Procedia, 2017, 114, 1716-1720.	1.8	5
53	Chemistry of Amine-Based CO2 Capture. SpringerBriefs in Energy, 2019, , 3-22.	0.2	5
54	Experimental study into carbon dioxide solubility and species distribution in aqueous alkanolamine solutions. WIT Transactions on Ecology and the Environment, 2012, , .	0.0	5

#	Article	IF	CITATIONS
55	Physical properties of microspheres prepared by blending poly(lactide-co-glycolide) and poly lactide. Bulletin of Materials Science, 2021, 44, 1.	0.8	4
56	Demonstration Plant of the Kawasaki CO2 Capture (KCC) System with Solid Sorbent for Coal-Fired Power Station. SSRN Electronic Journal, 0, , .	0.4	4
57	CO2 Capture with Adsorbents. SpringerBriefs in Energy, 2019, , 45-63.	0.2	3
58	Catalysis of CO ₂ Absorption in an Aqueous Alkanolamine Solution by Boron Compounds: A Combined Computational and Experimental Study. Industrial & Engineering Chemistry Research, 2020, 59, 13016-13023.	1.8	3
59	Factors for improving the performance of the separation membranes prepared by the blending of polyvinyl alcohol and a water absorbing agent. Polymer-Plastics Technology and Materials, 2021, 60, 659-669.	0.6	3
60	A Simple Method of Evaluating Alkanolamine Absorbents for Post-Combustion CO ₂ Capture. Journal of Chemical Engineering of Japan, 2014, 47, 463-470.	0.3	2
61	Development of Chemical CO2 Solvent for High-pressure CO2 Capture (3): Analyses on Absorbed Forms of CO2. Energy Procedia, 2017, 114, 2728-2735.	1.8	2
62	Preparation of Biodegradable Polymer Nanospheres Containing Manganese Porphyrin (Mn-Porphyrin). Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1010-1018.	1.9	2
63	High performance CO ₂ -facilitated transport membrane fabricated by compounding amine-terminated dendrimer in composite of polyvinyl alcohol and water-absorbing agent. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 849-859.	1.2	2
64	Cu Kα pulse generation in an X-ray tube with a plasma cathode induced by a femtosecond laser pulse. Radiation Physics and Chemistry, 2009, 78, 375-379.	1.4	1
65	Computational Chemistry Study of Molecular Interactions in CO ₂ -loaded Diethylene Glycol, Triethylene Glycol, and Diethylene Glycol Dimethyl Ether. Journal of the Japan Petroleum Institute, 2016, 59, 211-218.	0.4	1
66	Membrane for CO2 Separation. SpringerBriefs in Energy, 2019, , 65-83.	0.2	1
67	Correlation between Macroscopic Diffusion Rates and Microscopic Interactions in Ethylene Glycol-Based Solvents. Industrial & Engineering Chemistry Research, 2021, 60, 13368-13376.	1.8	1
68	Advanced Post-Combustion Co2 Capture System Using Novel Polyamine-Based Solid Sorbents. SSRN Electronic Journal, 0, , .	0.4	1
69	Reaction of Amine-Based Solvents for CO ₂ Capture and its Pressure Dependence. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2019, 29, 199-205.	0.1	1
70	Development of a polyvinyl alcohol/sodium polyacrylate composite polymer membrane with cesium carbonate as a mobile carrier for highâ€performance <scp>CO₂</scp> capture. Polymers for Advanced Technologies, 2022, 33, 1677-1684.	1.6	1
71	CO2 Capture with Absorbents. SpringerBriefs in Energy, 2019, , 23-44.	0.2	0
72	Degradation Behavior of Purified Components of Tetraethylenepentamine Impregnated Solid Sorbents for Co2 Capture. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
73	Guide to evaluate low viscous non-aqueous solvent for post-combustion CO2 capture. SSRN Electronic Journal, 0, , .	0.4	0
74	Development of a Kinetics Simulator based on Transition State Theory and Its Application to Gas Absorption Reaction in Solution. Kagaku Kogaku Ronbunshu, 2017, 43, 111-116.	0.1	0
75	A Guide to Evaluate Non–Aqueous Solvents and Amine Absorbent Structures for Post-Combustion CO2 Capture. SSRN Electronic Journal, 0, , .	0.4	0
76	Development of Novel Solvents for CO2 Removal from Blast Furnace Gas. SSRN Electronic Journal, 0, ,	0.4	0
77	Development of Amino-Functionalized New Task Specific Ionic Liquids (Tsils) for Efficient Co2 Capture. SSRN Electronic Journal, 0, , .	0.4	0
78	CO ₂ Absorption Effect on Electric Conductivities for Butylethanolamine and Methyldiethanolamine Aqueous Solutions at 313 K. Bunseki Kagaku, 2019, 68, 647-655.	0.1	0