
Jie Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7671889/publications.pdf Version: 2024-02-01

LE SONG

#	Article	IF	CITATIONS
1	Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Annals of Botany, 2015, 115, 541-553.	1.4	321
2	Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquatic Botany, 2008, 88, 331-337.	0.8	172
3	NaCl markedly improved the reproductive capacity of the euhalophyte Suaeda salsa. Functional Plant Biology, 2018, 45, 350.	1.1	133
4	Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa. Plant Physiology and Biochemistry, 2015, 95, 41-48.	2.8	119
5	Waterlogging and salinity effects on two <i>Suaeda salsa</i> populations. Physiologia Plantarum, 2011, 141, 343-351.	2.6	110
6	Effect of salinity on growth, ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa. Plant and Soil, 2009, 314, 133-141.	1.8	100
7	The role of the seed coat in adaptation of dimorphic seeds of the euhalophyte <i>Suaeda salsa</i> to salinity. Plant Species Biology, 2017, 32, 107-114.	0.6	95
8	Effects of salinity and nitrate on production and germination of dimorphic seeds applied both through the mother plant and exogenously during germination in <i><scp>S</scp>uaeda salsa</i> . Plant Species Biology, 2016, 31, 19-28.	0.6	92
9	Physiological and molecular evidence for Na + and Cl â~' exclusion in the roots of two Suaeda salsa populations. Aquatic Botany, 2018, 146, 1-7.	0.8	81
10	Nitric oxide participates in waterlogging tolerance through enhanced adventitious root formation in the euhalophyte Suaeda salsa. Functional Plant Biology, 2016, 43, 244.	1.1	77
11	Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species. BMC Plant Biology, 2019, 19, 388.	1.6	76
12	Osmotic adjustment traits of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions. Plant Science, 2006, 170, 113-119.	1.7	73
13	NaCl increases the activity of the plasma membrane H+-ATPase in C3 halophyte Suaeda salsa callus. Acta Physiologiae Plantarum, 2010, 32, 27-36.	1.0	70
14	Changes in endogenous hormones and seed-coat phenolics during seed storage of two Suaeda salsa populations. Australian Journal of Botany, 2016, 64, 325.	0.3	60
15	Thellungilla halophila is more adaptive to salinity than Arabidopsis thaliana at stages of seed germination and seedling establishment. Acta Physiologiae Plantarum, 2012, 34, 1287-1294.	1.0	56
16	Transcriptome analysis of sweet Sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant and Soil, 2018, 430, 423-439.	1.8	52
17	Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sweet sorghum. Plant Science, 2021, 304, 110801.	1.7	52
18	Accumulation of ions during seed development under controlled saline conditions of two Suaeda salsa populations is related to their adaptation to saline environments. Plant and Soil, 2011, 341, 99-107.	1.8	50

Jie Song

#	Article	IF	CITATIONS
19	Effect of combined waterlogging and salinity stresses on euhalophyte Suaeda glauca. Plant Physiology and Biochemistry, 2018, 127, 231-237.	2.8	50
20	Effects of nitric oxide and nitrogen on seedling emergence, ion accumulation, and seedling growth under salinity in the euhalophyte <i>Suaeda salsa</i> . Journal of Plant Nutrition and Soil Science, 2009, 172, 544-549.	1.1	42
21	Ecophysiological responses of the euhalophyte Suaeda salsa to the interactive effects of salinity and nitrate availability. Aquatic Botany, 2009, 91, 311-317.	0.8	39
22	Analysis of storage compounds and inorganic ions in dimorphic seeds of euhalophyte Suaeda salsa. Plant Physiology and Biochemistry, 2018, 130, 511-516.	2.8	35
23	Photosynthetic characteristics of nonâ€foliar organs in main C ₃ cereals. Physiologia Plantarum, 2019, 166, 226-239.	2.6	31
24	Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa. BMC Genomics, 2017, 18, 727.	1.2	27
25	Utilisation of stored lipids during germination in dimorphic seeds of euhalophyte Suaeda salsa. Functional Plant Biology, 2018, 45, 1009.	1.1	26
26	Heavy metal tolerance and potential for remediation of heavy metal-contaminated saline soils for the euhalophyte <i>Suaeda salsa</i> . Plant Signaling and Behavior, 2020, 15, 1805902.	1.2	26
27	Root morphology is related to the phenotypic variation in waterlogging tolerance of two populations of Suaeda salsa under salinity. Plant and Soil, 2009, 324, 231-240.	1.8	20
28	Adaptation of euhalophyte Suaeda salsa to nitrogen starvation under salinity. Plant Physiology and Biochemistry, 2020, 146, 287-293.	2.8	20
29	The role of rootâ€associated microbes in growth stimulation of plants under saline conditions. Land Degradation and Development, 2021, 32, 3471-3486.	1.8	20
30	Casparian bands and suberin lamellae: Key targets for breeding salt tolerant crops?. Environmental and Experimental Botany, 2021, 191, 104600.	2.0	18
31	Effects of Salinity and Nitrogen on Growth, Contents of Pigments, and Ion Accumulation of a EuhalophyteSuaeda Salsain an Intertidal Zone and on Saline Inland. Communications in Soil Science and Plant Analysis, 2010, 41, 88-97.	0.6	15
32	The expression patterns and putative function of nitrate transporter 2.5 in plants. Plant Signaling and Behavior, 2020, 15, 1815980.	1.2	15
33	The positive effect of salinity on nitrate uptake in Suaeda salsa. Plant Physiology and Biochemistry, 2021, 166, 958-963.	2.8	12
34	Luxury Absorption of Phosphorus Exists in Maize When Intercropping with Legumes or Oilseed Rape—Covering Different Locations and Years. Agronomy, 2019, 9, 314.	1.3	11
35	Positive effects of NaCl on the photoreaction and carbon assimilation efficiency in Suaeda salsa. Plant Physiology and Biochemistry, 2022, 177, 32-37.	2.8	11
36	Role of Suaeda salsa SsNRT2.1 in nitrate uptake under low nitrate and high saline conditions. Plant Physiology and Biochemistry, 2021, 159, 171-178.	2.8	7

#	Article	IF	CITATIONS
37	Nitrogen Uptake and Distribution in Different Chinese Cabbage Genotypes under Low Nitrogen Stress. International Journal of Molecular Sciences, 2022, 23, 1573.	1.8	5
38	Experimental evidence from Suaeda glauca explains why the species is not naturally distributed in non-saline soils. Science of the Total Environment, 2022, 817, 153028.	3.9	4