List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7671646/publications.pdf Version: 2024-02-01

ANNE F KWITER

#	Article	IF	CITATIONS
1	PhenoGeneRanker: Gene and Phenotype Prioritization Using Multiplex Heterogeneous Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2950-2962.	1.9	2
2	The Rat Genome Database (RGD) facilitates genomic and phenotypic data integration across multiple species for biomedical research. Mammalian Genome, 2022, 33, 66-80.	1.0	14
3	MOET: a web-based gene set enrichment tool at the Rat Genome Database for multiontology and multispecies analyses. Genetics, 2022, 220, .	1.2	7
4	Methods for the Comprehensive in vivo Analysis of Energy Flux, Fluid Homeostasis, Blood Pressure, and Ventilatory Function in Rodents. Frontiers in Physiology, 2022, 13, 855054.	1.3	15
5	Harmonizing model organism data in the Alliance of Genome Resources. Genetics, 2022, 220, .	1.2	52
6	Cardiometabolic effects of DOCA-salt in male C57BL/6J mice are variably dependent on sodium and nonsodium components of diet. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R467-R485.	0.9	7
7	Genetic Background in the Rat Impacts Metabolic Outcomes of Postâ€wean BPF Exposure. FASEB Journal, 2022, 36, .	0.2	0
8	Hybrid Rat Diversity Program (HRDP): A rat resource for mapping complex traits. FASEB Journal, 2022, 36, .	0.2	0
9	Femaleâ€ S pecific Features of Metabolic Syndrome in an LH Congenic Rat. FASEB Journal, 2022, 36, .	0.2	0
10	Targeted broad-based genetic testing by next-generation sequencing informs diagnosis and facilitates management in patients with kidney diseases. Nephrology Dialysis Transplantation, 2021, 36, 295-305.	0.4	34
11	Chromosome 2 Fragment Substitutions in Dahl Salt-Sensitive Rats and RNA Sequencing Identified Enpep and Hs2st1 as Vascular Inflammatory Modulators. Hypertension, 2021, 77, 178-189.	1.3	3
12	Bisphenol F Exposure in Adolescent Heterogeneous Stock Rats Affects Growth and Adiposity. Toxicological Sciences, 2021, 181, 246-261.	1.4	6
13	INTROGRESSION OF A BROWN NORWAY CHROMOSOME 2 FRAGMENT INTO DAHL SALT-SENSITIVE RATS EXERTS ANTI- AND PRO-INFLAMMATORY EFFECTS UNDER A NORMAL AND HIGH-SALT DIET, RESPECTIVELY. Journal of Hypertension, 2021, 39, e16-e17.	0.3	0
14	Recent Advances in Hypertension. Hypertension, 2021, 77, 1061-1068.	1.3	16
15	The genome sequence of the Norway rat, Rattus norvegicus Berkenhout 1769. Wellcome Open Research, 2021, 6, 118.	0.9	16
16	Abstract 60: Perirenal Adipose Hypertrophy In A Congenic LH Rat: A Role For <i>C17h6orf52</i> . Hypertension, 2021, 78, .	1.3	0
17	Abstract P177: Sex- And Strain- Specific Metabolic Effects Of Postnatal Bpf Exposure In Heterogeneous Stock Rat Founding Inbred Strains. Hypertension, 2021, 78, .	1.3	0
18	The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Research, 2021, 49, D325-D334.	6.5	2,416

#	Article	IF	CITATIONS
19	Multiâ€Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. , 2021, 12, 3045-3084.		4
20	The Year of the Rat: The Rat Genome Database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids Research, 2020, 48, D731-D742.	6.5	92
21	Reduced mRNA Expression of RGS2 (Regulator of G Protein Signaling-2) in the Placenta Is Associated With Human Preeclampsia and Sufficient to Cause Features of the Disorder in Mice. Hypertension, 2020, 75, 569-579.	1.3	24
22	Single-Nucleus RNA Sequencing of the Hypothalamic Arcuate Nucleus of C57BL/6J Mice After Prolonged Diet-Induced Obesity. Hypertension, 2020, 76, 589-597.	1.3	23
23	NECo: A node embedding algorithm for multiplex heterogeneous networks. , 2020, 2020, 146-149.		3
24	Metabolic Effects of Maternal Bisphenol F Exposure in Populationâ€based Heterogeneous Stock Rats. FASEB Journal, 2020, 34, 1-1.	0.2	0
25	Abstract P117: Blood Pressure Heterosis And Genotype-Specific Regulation Of C17h6orf52. Hypertension, 2020, 76, .	1.3	Ο
26	Rat Models of Metabolic Syndrome. Methods in Molecular Biology, 2019, 2018, 269-285.	0.4	21
27	CRISPRâ€Cas9 Gene Editing Yields a Novel Rat Model of Cardiometabolic Disease. FASEB Journal, 2019, 33, 597.1.	0.2	Ο
28	Metabolic Influences of Bisphenol F Exposure in Populationâ€based Heterogeneous Stock Rats. FASEB Journal, 2019, 33, 594.1.	0.2	0
29	Abstract 053: Gene Editing Yields a Novel Rat Model of Cardiometabolic Disease. Hypertension, 2019, 74,	1.3	Ο
30	Abstract P150: Genes of a Brown Norway Chromosome 2 Fragment Introgressed Into Hypertensive Dahl Salt-Sensitive Background Exert Pro-Inflammatory Effects When Stimulated by a High-Salt Diet. Hypertension, 2019, 74, .	1.3	0
31	Abstract P3062: Single-nucleus Rna-sequencing Reveals Cell-specific Transcriptome Changes In The Hypothalamic Arcuate Nucleus In Response To Prolonged High-fat Diet. Hypertension, 2019, 74, .	1.3	Ο
32	Cervical vagal nerve stimulation impairs glucose tolerance and suppresses insulin release in conscious rats. Physiological Reports, 2018, 6, e13953.	0.7	23
33	A3964 Identification of chromosome 2 differentially expressed aortic genes linked to vascular inflammation using congenic rats fed a normal and high-salt diet. Journal of Hypertension, 2018, 36, e25.	0.3	Ο
34	Abstract P223: Identification of Chromosome 2 Differentially Expressed Genes Linked to Vascular Inflammation Using Congenic Rats Fed a Normal and High-Salt Diet. Hypertension, 2018, 72, .	1.3	0
35	Screening of Living Kidney Donors for Genetic Diseases Using a Comprehensive Genetic Testing Strategy. American Journal of Transplantation, 2017, 17, 401-410.	2.6	27
36	Genome variation and conserved regulation identify genomic regions responsible for strain specific phenotypes in rat. BMC Genomics, 2017, 18, 986.	1.2	3

#	Article	IF	CITATIONS
37	Contribution of independent and pleiotropic genetic effects in the metabolic syndrome in a hypertensive rat. PLoS ONE, 2017, 12, e0182650.	1.1	8
38	Abstract P279: Mapping of Chromosome 2 Differentially Expressed Aortic Genes Linked to Vascular Inflammation Using Congenic Rats Fed a High-salt Diet. Hypertension, 2017, 70, .	1.3	0
39	Abstract P469: CRISPR-Cas9 Gene Editing Yields Genetic Regulation of Obesity and Metabolism in Female LH-derived Rats. Hypertension, 2017, 70, .	1.3	0
40	Abstract P261: Vasopressin System Components are Dysregulated in Human Preeclamptic Placenta. Hypertension, 2017, 70, .	1.3	1
41	Abstract P278: Identification of Differentially Expressed Aortic Genes in Brown Norway Introgressed Chromosome 2 Segments into Hypertensive Dahl Salt Sensitive Rats. Hypertension, 2017, 70, .	1.3	0
42	MPS 18-08 MAPPING OF CHROMOSOME 2 REGIONS LINKED TO VASCULAR INFLAMMATION USING CONGENIC RATS. Journal of Hypertension, 2016, 34, e425.	0.3	0
43	Abstract P227: Mapping of Chromosome 2 Regions Linked to Vascular Inflammation Using Congenic Rats. Hypertension, 2016, 68, .	1.3	0
44	Systems Biology With High-Throughput Sequencing Reveals Genetic Mechanisms Underlying the Metabolic Syndrome in the Lyon Hypertensive Rat. Circulation: Cardiovascular Genetics, 2015, 8, 316-326.	5.1	24
45	Abstract P638: Investigating Gene Pleiotropy in the Metabolic Syndrome in Lyon Hypertensive Rats. Hypertension, 2015, 66, .	1.3	0
46	Genomic structure of nucleotide diversity among Lyon rat models of metabolic syndrome. BMC Genomics, 2014, 15, 197.	1.2	10
47	An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome Biology, 2014, 15, R53.	13.9	101
48	Abstract 617: The Consomic LH-17 ^{LN} Rat Is A Single Chromosome Model Of Metabolic Syndrome. Hypertension, 2014, 64, .	1.3	0
49	Genome Sequencing Reveals Loci under Artificial Selection that Underlie Disease Phenotypes in the Laboratory Rat. Cell, 2013, 154, 691-703.	13.5	154
50	Allele-Specific Expression of Angiotensinogen in Human Subcutaneous Adipose Tissue. Hypertension, 2013, 62, 41-47.	1.3	12
51	A Novel Otoferlin Splice-Site Mutation in Siblings with Auditory Neuropathy Spectrum Disorder. Audiology and Neuro-Otology, 2013, 18, 374-382.	0.6	17
52	Abstract 257: Mapping of Chromosome 2 Regions Linked to Vascular Inflammation using Congenic Rats. Hypertension, 2013, 62, .	1.3	0
53	Abstract 518: Systems Biology Approach to Identify Genetic Mechanisms Underlying the Metabolic Syndrome in the LH Rat. Hypertension, 2013, 62, .	1.3	0
54	Abstract 651: Genetic Mapping Of Traits And Transcriptome In The Lyon Hypertensive Rat. Hypertension, 2012, 60, .	1.3	0

#	Article	IF	CITATIONS
55	Abstract 167: Mapping of Chromosome 2 Regions Linked to Vascular Inflammation Using Congenic Rats. Hypertension, 2012, 60, .	1.3	0
56	BB rat Gimap gene expression in sorted lymphoid T and B cells. Life Sciences, 2011, 89, 748-754.	2.0	9
57	Differential effects of leptin receptor mutation on male and female BBDR. ^{<i>Gimap5â^'/Gimap5â^'</i>} spontaneously diabetic rats. Physiological Genomics, 2010, 41, 9-20.	1.0	9
58	Genetic dissection reveals diabetes loci proximal to the gimap5 lymphopenia gene. Physiological Genomics, 2009, 38, 89-97.	1.0	13
59	Sequence Variation and Expression of theGimapGene Family in the BB Rat. Experimental Diabetes Research, 2009, 2009, 1-10.	3.8	11
60	Congenic strains provide evidence that four mapped loci in chromosomes 2, 4, and 16 influence hypertension in the SHR. Physiological Genomics, 2009, 37, 52-57.	1.0	16
61	Implication of chromosome 13 on hypertension and associated disorders in Lyon hypertensive rats. Journal of Hypertension, 2009, 27, 1186-1193.	0.3	14
62	Progress and prospects in rat genetics: a community view. Nature Genetics, 2008, 40, 516-522.	9.4	265
63	Comparative Genomics for Detecting Human Disease Genes. Advances in Genetics, 2008, 60, 655-697.	0.8	16
64	Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. American Journal of Physiology - Renal Physiology, 2008, 295, F837-F842.	1.3	101
65	Molecular networks in Dahl salt-sensitive hypertension based on transcriptome analysis of a panel of consomic rats. Physiological Genomics, 2008, 34, 54-64.	1.0	45
66	Impaired survival of peripheral T cells, disrupted NK/NKT cell development, and liver failure in mice lacking Gimap5. Blood, 2008, 112, 4905-4914.	0.6	56
67	Genetically Hypertensive Brown Norway Congenic Rat Strains Suggest Intermediate Traits Underlying Genetic Hypertension. Croatian Medical Journal, 2008, 49, 586-599.	0.2	8
68	Effects of chromosome 17 on features of the metabolic syndrome in the Lyon hypertensive rat. Physiological Genomics, 2008, 33, 212-217.	1.0	18
69	A guinea pig's history of biology. Journal of Clinical Investigation, 2008, 118, 1589-1589.	3.9	Ο
70	Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. American Journal of Physiology - Renal Physiology, 2007, 293, F1905-F1914.	1.3	42
71	The Rat Genome Database, update 2007Easing the path from disease to data and back again. Nucleic Acids Research, 2007, 35, D658-D662.	6.5	119
72	Epistatic interaction between haplotypes of the ghrelin ligand and receptor genes influence susceptibility to myocardial infarction and coronary artery disease. Human Molecular Genetics, 2007, 16, 887-899.	1.4	35

#	Article	IF	CITATIONS
73	Highâ€Throughput Production and Phenotyping of Rat Knockout Models for Hypertension. FASEB Journal, 2007, 21, A1236.	0.2	0
74	High throughâ€put screening method for novel and circadian movement behavior and breathing in ENU mutagenic and consomic inbred strains of rats. FASEB Journal, 2007, 21, A1396.	0.2	1
75	The Application of Microarray Analysis to Pediatric Diseases. Pediatric Clinics of North America, 2006, 53, 579-590.	0.9	1
76	Fine mapping of Lvm1: a quantitative trait locus controlling heart size independently of blood pressure. Pulmonary Pharmacology and Therapeutics, 2006, 19, 70-73.	1.1	5
77	Consomic strategies to localize genomic regions related to vascular reactivity in the Dahl salt-sensitive rat. Physiological Genomics, 2006, 26, 218-225.	1.0	26
78	BN phenome: detailed characterization of the cardiovascular, renal, and pulmonary systems of the sequenced rat. Physiological Genomics, 2006, 25, 303-313.	1.0	40
79	Physiogenomic resources for rat models of heart, lung and blood disorders. Nature Genetics, 2006, 38, 234-239.	9.4	48
80	Characterization of blood pressure and renal function in chromosome 5 congenic strains of Dahl S rats. American Journal of Physiology - Renal Physiology, 2006, 290, F1463-F1471.	1.3	25
81	Association of the Ghrelin Receptor Gene Region With Left Ventricular Hypertrophy in the General Population. Hypertension, 2006, 47, 920-927.	1.3	26
82	Introgression of F344 Rat Genomic DNA on BB Rat Chromosome 4 Generates Diabetes-Resistant Lymphopenic BB Rats. Diabetes, 2006, 55, 3351-3357.	0.3	17
83	Evidence of a Functional Role for Mast Cells in the Development of Type 1 Diabetes Mellitus in the BioBreeding Rat. Journal of Immunology, 2006, 177, 7275-7286.	0.4	64
84	Sequence analysis of the complete mitochondrial DNA in 10 commonly used inbred rat strains. American Journal of Physiology - Cell Physiology, 2006, 291, C1183-C1192.	2.1	39
85	Using Multiple Ontologies to Integrate Complex Biological Data. Comparative and Functional Genomics, 2005, 6, 373-378.	2.0	8
86	Tools and strategies for physiological genomics: the Rat Genome Database. Physiological Genomics, 2005, 23, 246-256.	1.0	25
87	Impact of genomics on research in the rat. Genome Research, 2005, 15, 1717-1728.	2.4	48
88	In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library. Audiology and Neuro-Otology, 2005, 10, 310-322.	0.6	8
89	Genetic Linkage and Association of the Growth Hormone Secretagogue Receptor (Ghrelin Receptor) Gene in Human Obesity. Diabetes, 2005, 54, 259-267.	0.3	90
90	Transgenic rescue demonstrates involvement of the Ian5 gene in T cell development in the rat. Physiological Genomics, 2004, 19, 228-232.	1.0	34

#	Article	IF	CITATIONS
91	The Rat Genome Database (RGD): developments towards a phenome database. Nucleic Acids Research, 2004, 33, D485-D491.	6.5	56
92	Genetic determinants of obesity-related lipid traits. Journal of Lipid Research, 2004, 45, 610-615.	2.0	32
93	High-Density Rat Radiation Hybrid Maps Containing Over 24,000 SSLPs, Genes, and ESTs Provide a Direct Link to the Rat Genome Sequence. Genome Research, 2004, 14, 750-757.	2.4	36
94	Mapping the Genetic Determinants of Hypertension, Metabolic Diseases, and Related Phenotypes in the Lyon Hypertensive Rat. Hypertension, 2004, 44, 695-701.	1.3	56
95	Integrative Genomics: In Silico Coupling of Rat Physiology and Complex Traits With Mouse and Human Data. Genome Research, 2004, 14, 651-660.	2.4	19
96	Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 2004, 428, 493-521.	13.7	1,943
97	Genetic dissection of lymphopenia from autoimmunity by introgression of mutated lan5 gene onto the F344 rat. Journal of Autoimmunity, 2003, 21, 315-324.	3.0	32
98	Assessing unmodified 70-mer oligonucleotide probe performance on glass-slide microarrays. Genome Biology, 2003, 4, R5.	13.9	121
99	Expression of G-protein Alpha Subunit Genes in the Vestibular Periphery of Rattus norvegieus and their Chromosomal Mapping. Acta Oto-Laryngologica, 2003, 123, 1027-1034.	0.3	8
100	Rat Genome Database (RGD): mapping disease onto the genome. Nucleic Acids Research, 2002, 30, 125-128.	6.5	96
101	Lymphopenia in the BB Rat Model of Type 1 Diabetes is Due to a Mutation in a Novel Immune-Associated Nucleotide (Ian)-Related Gene. Genome Research, 2002, 12, 1029-1039.	2.4	199
102	Radiation hybrid mapping of five muscarinic acetylcholine receptor subtype genes in Rattus norvegicus. Hearing Research, 2002, 174, 86-92.	0.9	6
103	Radiation hybrid mapping of 70 rat genes from a data set of differentially expressed genes. Mammalian Genome, 2002, 13, 194-197.	1.0	6
104	Rat genetics: attachign physiology and pharmacology to the genome. Nature Reviews Genetics, 2002, 3, 33-42.	7.7	245
105	Consomic Rats for the Identification of Genes and Pathways Underlying Cardiovascular Disease. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 309-316.	2.0	16
106	Radiation hybrid mapping of 11 alpha and beta nicotinic acetylcholine receptor genes in Rattus norvegicus. Molecular Brain Research, 2001, 91, 169-173.	2.5	10
107	Automated Construction of High-Density Comparative Maps Between Rat, Human, and Mouse. Genome Research, 2001, 11, 1935-1943.	2.4	40
108	The use of designer rats in the genetic dissection of hypertension. Current Hypertension Reports, 2001, 3, 12-18.	1.5	53

#	Article	IF	CITATIONS
109	The Genetic Basis of Plasma Variation in Adiponectin, a Global Endophenotype for Obesity and the Metabolic Syndrome. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4321-4325.	1.8	273
110	Generation of a High-Density Rat EST Map. Genome Research, 2001, 11, 497-502.	2.4	23
111	New Target Regions for Human Hypertension via Comparative Genomics. Genome Research, 2000, 10, 473-482.	2.4	207
112	Retinoic Acid–Induced Tissue Transglutaminase and Apoptosis in Vascular Smooth Muscle Cells. Circulation Research, 2000, 87, 881-887.	2.0	54
113	High-Throughput Scanning of the Rat Genome Using Interspersed Repetitive Sequence-PCR Markers. Genomics, 2000, 69, 287-294.	1.3	16
114	The role of rats in functional genomics. Lab Animal, 2000, 29, 44-8.	0.2	3
115	Molecular Cloning, Tissue-Specific Expression, and Chromosomal Localization of a Novel Nerve Growth Factor-Regulated G-Protein-Coupled Receptor, nrg-1. Molecular and Cellular Neurosciences, 1999, 14, 141-152.	1.0	70
116	Use of a DNA pooling strategy to identify a human obesity syndrome locus on chromosome 15. Human Molecular Genetics, 1995, 4, 9-13.	1.4	171
117	Identification of a Bardet-Biedl syndrome locus on chromosome 3 and evaluation of an efficient approach to homozygosity mapping. Human Molecular Genetics, 1994, 3, 1331-1335.	1.4	216
118	A denaturing gradient gel electrophoresis assay for sensitive detection of p53 mutations. Human Genetics, 1993, 91, 25-30.	1.8	36
119	Linkage of Bardet–Biedl syndrome to chromosome 16q and evidence for non–allelic genetic heterogeneity. Nature Genetics, 1993, 5, 392-396.	9.4	176
120	The Sensitivity of Single-Strand Conformation Polymorphism Analysis for the Detection of Single Base Substitutions. Genomics, 1993, 16, 325-332.	1.3	653
121	Clinical Features and Linkage Analysis of a Family with Autosomal Dominant Juvenile Glaucoma. Ophthalmology, 1993, 100, 524-529.	2.5	114
122	Linkage of Rieger syndrome to the region of the epidermal growth factor gene on chromosome 4. Nature Genetics, 1992, 2, 46-49.	9.4	100
123	Mapping of human chromosome 5 microsatellite DNA polymorphisms. Genomics, 1991, 11, 695-700.	1.3	85
124	Linkage mapping of D21S171 to the distal long arm of human chromosome 21 using a polymorphic (AC)n dinucleotide repeat. Human Genetics, 1991, 87, 401-4.	1.8	14
125	Dinucleotide repeat polymorphism at the D6S105 locus. Nucleic Acids Research, 1991, 19, 968-968.	6.5	55
126	Dinucleotide repeat polymorphism at the D19S75 locus. Nucleic Acids Research, 1990, 18, 4639-4639.	6.5	4

#	Article	IF	CITATIONS
127	Dinucleotide repeat polymorphism at the D12S43 locus. Nucleic Acids Research, 1990, 18, 4637-4637.	6.5	Ο
128	Dinucleotide repeat polymorphism at the CRP locus. Nucleic Acids Research, 1990, 18, 4635-4635.	6.5	8
129	Dinucleotide repeat polymorphism at the D1S102 locus. Nucleic Acids Research, 1990, 18, 2199-2199.	6.5	4
130	Dinucleotide repeat polymorphisms at the D16S260, D16S261, D16S265, D16S266, and D16S267 loci. Nucleic Acids Research, 1990, 18, 4034-4034.	6.5	31
131	Dinucleotide repeat polymorphism at the D4S174 locus. Nucleic Acids Research, 1990, 18, 4636-4636.	6.5	6
132	Dinucleotide repeat polymorphism at the D15S87 locus. Nucleic Acids Research, 1990, 18, 4640-4640.	6.5	9
133	Dinucleotide repeat polymorphism at the D14S34 locus. Nucleic Acids Research, 1990, 18, 4638-4638.	6.5	2
134	Dinucleotide repeat polymorphisms at the D11S419 and CD3D loci. Nucleic Acids Research, 1990, 18, 4036-4036.	6.5	28
135	Dinucleotide repeat polymorphism at the D13S71 locus. Nucleic Acids Research, 1990, 18, 4638-4638.	6.5	5
136	Dinucleotide repeat polymorphisms at the DXS453, DXS454 and DXS458 loci. Nucleic Acids Research, 1990, 18, 4037-4037.	6.5	57
137	Dinucleotide repeat polymorphisms at the D7S435 and D7S440 loci. Nucleic Acids Research, 1990, 18, 4039-4039.	6.5	23
138	Dinucleotide repeat polymorphisms at the D8S85, D8S87, and D8S88 loci. Nucleic Acids Research, 1990, 18, 4038-4038.	6.5	30
139	Dinucleotide repeat polymorphisms at the D5S107, D5S108, D5S111, D5S117 and D5S118 loci. Nucleic Acids Research, 1990, 18, 4035-4035.	6.5	32
140	Linkage mapping of the highly informative DNA marker D21S156 to human chromosome 21 using a polymorphic GT dinucleotide repeat. Genomics, 1990, 8, 400-402.	1.3	28
141	Dinucleotide repeat polymorphism at the D1S103 locus. Nucleic Acids Research, 1990, 18, 2199.	6.5	14
142	Dinucleotide repeat polymorphism at the D1S104 locus. Nucleic Acids Research, 1990, 18, 2835.	6.5	14
143	Dinucleotide repeat polymorphism at the D6S87 locus. Nucleic Acids Research, 1990, 18, 4636.	6.5	25
144	Dinucleotide repeat polymorphism at the D12S43 locus. Nucleic Acids Research, 1990, 18, 4637.	6.5	4

#	Article	IF	CITATIONS
145	Dinucleotide repeat polymorphism at the D14S34 locus. Nucleic Acids Research, 1990, 18, 4638.	6.5	11
146	Dinucleotide repeat polymorphisms at the D17S250 and D17S261 loci. Nucleic Acids Research, 1990, 18, 4640.	6.5	110
147	Genetic Markers and Genotyping Analyses for Genetic Disease Studies. , 0, , 661-689.		0
148	Body Composition and Metabolic Changes in a Lyon Hypertensive Congenic Rat and Identification of Ercc6l2 as a Positional Candidate Gene. Frontiers in Genetics, 0, 13, .	1.1	1