
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7671443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-Time Detection and Feedback of Canonical Electroencephalogram Microstates: Validating a Neurofeedback System as a Function of Delay. Frontiers in Systems Neuroscience, 2022, 16, 786200.	1.2	3
2	Neuroimaging Examination of Driving Mode Switching Corresponding to Changes in the Driving Environment. Frontiers in Human Neuroscience, 2022, 16, 788729.	1.0	3
3	The sense of agency in perception, behaviour and human–machine interactions. , 2022, 1, 211-222.		29
4	l Hear My Voice; Therefore I Spoke: The Sense of Agency Over Speech Is Enhanced by Hearing One's Own Voice. Psychological Science, 2022, 33, 1226-1239.	1.8	2
5	Common Brain Networks Between Major Depressive-Disorder Diagnosis and Symptoms of Depression That Are Validated for Independent Cohorts. Frontiers in Psychiatry, 2021, 12, 667881.	1.3	3
6	A multi-site, multi-disorder resting-state magnetic resonance image database. Scientific Data, 2021, 8, 227.	2.4	48
7	Perception and control: individual difference in the sense of agency is associated with learnability in sensorimotor adaptation. Scientific Reports, 2021, 11, 20542.	1.6	8
8	Bayesian Estimation of Potential Performance Improvement Elicited by Robot-Guided Training. Frontiers in Neuroscience, 2021, 15, 704402.	1.4	1
9	Individual Differences in the Change of Attentional Functions With Brief One-Time Focused Attention and Open Monitoring Meditations. Frontiers in Psychology, 2021, 12, 716138.	1.1	1
10	The Active Sensing of Control Difference. IScience, 2020, 23, 101112.	1.9	12
11	Statistical Learning Model of the Sense of Agency. Frontiers in Psychology, 2020, 11, 539957.	1.1	5
12	Passive training with upper extremity exoskeleton robot affects proprioceptive acuity and performance of motor learning. Scientific Reports, 2020, 10, 11820.	1.6	17
13	Sense of Agency Beyond Sensorimotor Process: Decoding Self-Other Action Attribution in the Human Brain. Cerebral Cortex, 2020, 30, 4076-4091.	1.6	29
14	Overlapping but Asymmetrical Relationships Between Schizophrenia and Autism Revealed by Brain Connectivity. Schizophrenia Bulletin, 2020, 46, 1210-1218.	2.3	28
15	Generalizable brain network markers of major depressive disorder across multiple imaging sites. PLoS Biology, 2020, 18, e3000966.	2.6	54
16	Categorical Perception of Control. ENeuro, 2020, 7, .	0.9	1
17	Categorical Perception of Control. ENeuro, 2020, 7, ENEURO.0258-20.2020.	0.9	7
18	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		0

#	Article	IF	CITATIONS
19	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		0
20	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		0
21	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		Ο
22	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		0
23	Generalizable brain network markers of major depressive disorder across multiple imaging sites. , 2020, 18, e3000966.		Ο
24	Compress global, dilate local: Intentional binding in action–outcome alternations. Consciousness and Cognition, 2019, 73, 102768.	0.8	5
25	Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biology, 2019, 17, e3000042.	2.6	127
26	Fourth finger dependence of high-functioning autism spectrum disorder in multi-digit force coordination. Scientific Reports, 2019, 9, 1737.	1.6	2
27	The individual differences in the effects of short-term focused-attention- and open-monitoring-meditations on attentional processing. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2019, 83, 1C-048-1C-048.	0.0	0
28	Elderly brain activity seen from EEG microstates and Functional Connectivity. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2019, 83, 1A-052-1A-052.	0.0	0
29	The role of sense of agency in explorative and exploitative actions. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2019, 83, SS-038-SS-038.	0.0	Ο
30	Temporal recalibration of motor and visual potentials in lag adaptation in voluntary movement. NeuroImage, 2018, 172, 654-662.	2.1	15
31	Investigation on the Neural Correlates of Haptic Training. , 2018, , .		2
32	Voluntarily controlled but not merely observed visual feedback affects postural sway. PeerJ, 2018, 6, e4643.	0.9	5
33	A prediction model of working memory across health and psychiatric disease using whole-brain functional connectivity. ELife, 2018, 7, .	2.8	73
34	Investigation of rest and meditation state by functional brain networks. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2018, 82, 3AM-062-3AM-062.	0.0	0
35	Control strategy of hand movement depends on target redundancy. Scientific Reports, 2017, 7, 45722.	1.6	4
36	Connectivity Neurofeedback Training Can Differentially Change Functional Connectivity and Cognitive Performance. Cerebral Cortex, 2017, 27, 4960-4970.	1.6	62

#	Article	IF	CITATIONS
37	Empirical Evaluation of Voluntarily Activatable Muscle Synergies. Frontiers in Computational Neuroscience, 2017, 11, 82.	1.2	5
38	Sense of self: Interactions with the body and space, and its neural basis. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2017, 81, SS-062-SS-062.	0.0	0
39	Learning process and Sense of Agency: Bayesian learning or not. , 2016, , .		1
40	Anticipatory synergy adjustments reflect individual performance of feedforward force control. Neuroscience Letters, 2016, 632, 192-198.	1.0	7
41	Single-trial prediction of reaction time variability from MEG brain activity. Scientific Reports, 2016, 6, 27416.	1.6	5
42	A small number of abnormal brain connections predicts adult autism spectrum disorder. Nature Communications, 2016, 7, 11254.	5.8	244
43	Computational motor control as a window to understanding schizophrenia. Neuroscience Research, 2016, 104, 44-51.	1.0	13
44	Bayesian model of the Sense of Agency in normal subjects. , 2015, , .		2
45	Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network. Frontiers in Human Neuroscience, 2015, 9, 160.	1.0	116
46	Neural Substrates Related to Motor Memory with Multiple Timescales in Sensorimotor Adaptation. PLoS Biology, 2015, 13, e1002312.	2.6	87
47	Predicting learning plateau of working memory from whole-brain intrinsic network connectivity patterns. Scientific Reports, 2015, 5, 7622.	1.6	47
48	Normalized Index of Synergy for Evaluating the Coordination of Motor Commands. PLoS ONE, 2015, 10, e0140836.	1.1	2
49	Changes in Human Brain Networks and Spontaneous Activity Caused by Motor and Cognitive Learning. , 2015, , 331-341.		0
50	Is movement duration predetermined in visually guided reaching? A comparison of finite- and infinite-horizon optimal feedback control. The Abstracts of the International Conference on Advanced Mechatronics Toward Evolutionary Fusion of IT and Mechatronics ICAM, 2015, 2015.6, 247-248.	0.0	1
51	Consensus Paper: The Cerebellum's Role in Movement and Cognition. Cerebellum, 2014, 13, 151-177.	1.4	815
52	Telling the past, the present and future of your mind and body from your brain -understanding personality and applying to education, sports, and rehabilitation The Proceedings of the Annual Convention of the Japanese Psychological Association, 2014, 78, SS-032-SS-032.	0.0	0
53	Humanoid Brain Science. Frontiers in Neuroengineering Series, 2014, , 29-46.	0.4	0
54	Human Sensorimotor Cortex Represents Conflicting Visuomotor Mappings. Journal of Neuroscience, 2013, 33, 6412-6422.	1.7	28

#	Article	IF	CITATIONS
55	Imposed visual feedback delay of an action changes mass perception based on the sensory prediction error. Frontiers in Psychology, 2013, 4, 760.	1.1	23
56	Illusory Reversal of Causality between Touch and Vision has No Effect on Prism Adaptation Rate. Frontiers in Psychology, 2012, 3, 545.	1.1	4
57	Cerebellar Internal Models: Implications for the Dexterous Use of Tools. Cerebellum, 2012, 11, 325-335.	1.4	81
58	Directional tuning of cortical activity estimated by vbmeg during wrist movements. Neuroscience Research, 2011, 71, e347-e348.	1.0	0
59	Reconstruction of two-dimensional movement trajectories from selected magnetoencephalography cortical currents by combined sparse Bayesian methods. NeuroImage, 2011, 54, 892-905.	2.1	72
60	Physical delay but not subjective delay determines learning rate in prism adaptation. Experimental Brain Research, 2011, 208, 257-268.	0.7	32
61	Physical but not subjective delay determines learning rate of prism adaptation. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2011, 75, 1AM110-1AM110.	0.0	0
62	Prediction of sensorimotor feedback from the efference copy of motor commands: A review of behavioral and functional neuroimaging studies. Japanese Psychological Research, 2010, 52, 107-120.	0.4	25
63	Editorial: Toward understanding global networks in the brain. Japanese Psychological Research, 2010, 52, 49-53.	0.4	0
64	Physical delay but not subjective delay determines the learning rate in prism adaptation. Neuroscience Research, 2010, 68, e279.	1.0	0
65	Computational mechanisms dealing with gains and losses in reinforcement learning. Neuroscience Research, 2010, 68, e410.	1.0	Ο
66	Learning and Switching of Internal Models for Dexterous Tool Use. , 2010, , 245-266.		1
67	Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychological Research, 2009, 73, 527-544.	1.0	102
68	Temporal evolution of neural activity during motor planning and motor preparation in humans. Neuroscience Research, 2009, 65, S104.	1.0	0
69	Shared neural correlates for language and tool use in Broca's area. NeuroReport, 2009, 20, 1376-1381.	0.6	130
70	Neural Correlates of Predictive and Postdictive Switching Mechanisms for Internal Models. Journal of Neuroscience, 2008, 28, 10751-10765.	1.7	50
71	Mechanisms of Human Sensorimotor-Learning and Their Implications for Brain Communication. IEICE Transactions on Communications, 2008, E91-B, 2102-2108.	0.4	2
72	Accurate Real-Time Feedback of Surface EMG During fMRI. Journal of Neurophysiology, 2007, 97, 912-920.	0.9	21

#	Article	IF	CITATIONS
73	Central control of grasp: Manipulation of objects with complex and simple dynamics. NeuroImage, 2007, 36, 388-395.	2.1	50
74	Reorganization of Brain Activity for Multiple Internal Models After Short But Intensive Training. Cortex, 2007, 43, 338-349.	1.1	67
75	Cerebellar Activity Evoked By Common Tool-Use Execution And Imagery Tasks: An Fmri Study. Cortex, 2007, 43, 350-358.	1.1	107
76	Explicit contextual information selectively contributes to predictive switching of internal models. Experimental Brain Research, 2007, 181, 395-408.	0.7	85
77	Effects of Conscious Awareness on Learning Acquisition and Switching of Internal Models. Journal of the Robotics Society of Japan, 2007, 25, 699-705.	0.0	1
78	Reconstruction of Temporal Movement from Single-trial Non-invasive Brain Activity: A Hierarchical Bayesian Method. Lecture Notes in Computer Science, 2007, , 1027-1036.	1.0	1
79	Neural Correlates of Internal-Model Loading. Current Biology, 2006, 16, 2440-2445.	1.8	63
80	A computational model of anterior intraparietal (AIP) neurons. Neurocomputing, 2006, 69, 1354-1361.	3.5	20
81	Central Representation of Dynamics When Manipulating Handheld Objects. Journal of Neurophysiology, 2006, 95, 893-901.	0.9	20
82	Multi-Joint Arm Movements to Investigate Motor Control with fMRI. , 2005, 2005, 4488-91.		3
83	Activation of the Human Superior Temporal Gyrus during Observation of Goal Attribution by Intentional Objects. Journal of Cognitive Neuroscience, 2004, 16, 1695-1705.	1.1	170
84	Functional Magnetic Resonance Imaging Examination of Two Modular Architectures for Switching Multiple Internal Models. Journal of Neuroscience, 2004, 24, 1173-1181.	1.7	120
85	A Neural Correlate of Reward-Based Behavioral Learning in Caudate Nucleus: A Functional Magnetic Resonance Imaging Study of a Stochastic Decision Task. Journal of Neuroscience, 2004, 24, 1660-1665.	1.7	265
86	The possibility of using forward models for multi-limb coordination: Examination of models for grip-load force coupling in humans. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi Tsushin Gakkai Ronbunshi), 2004, 87, 44-56.	0.1	0
87	Modular organization of internal models of tools in the human cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5461-5466.	3.3	280
88	Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Progress in Brain Research, 2003, 142, 171-188.	0.9	201
89	Things happening in the brain while humans learn to use new tools. , 2003, , .		8
90	Composition and decomposition learning of reaching movements under altered environments: An examination of the multiplicity of internal models. Systems and Computers in Japan. 2002. 33, 80-94	0.2	7

HIROSHI IMAMIZU

#	Article	IF	CITATIONS
91	Brain activity related to switching of internal models: an fMRI study. NeuroImage, 2001, 13, 1193.	2.1	24
92	The cerebellum coordinates eye and hand tracking movements. Nature Neuroscience, 2001, 4, 638-644.	7.1	220
93	Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 2000, 403, 192-195.	13.7	957
94	Activation of the cerebellum in co-ordinated eye and hand tracking movements: an fMRI study. Experimental Brain Research, 2000, 135, 22-33.	0.7	96
95	Composition and Decomposition of Internal Models in Motor Learning under Altered Kinematic and Dynamic Environments. Journal of Neuroscience, 1999, 19, RC34-RC34.	1.7	158
96	Quantitative Examinations of Internal Representations for Arm Trajectory Planning: Minimum Commanded Torque Change Model. Journal of Neurophysiology, 1999, 81, 2140-2155.	0.9	290
97	Cerebro-cerebellar functional connectivity revealed by the laterality index in tool-use learning. NeuroReport, 1999, 10, 325-331.	0.6	74
98	Adaptive internal model of intrinsic kinematics involved in learning an aiming task Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 812-829.	0.7	37
99	Adaptive internal model of intrinsic kinematics involved in learning an aiming task Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 812-829.	0.7	22
100	1566 Estimation of change in arm stiffness during motor learning using EMG signals. Neuroscience Research, 1997, 28, S202.	1.0	0
101	The locus of visual-motor learning at the task or manipulator level: Implications from intermanual transfer Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 719-733.	0.7	98
102	Internal representations of the motor apparatus: Implications from generalization in visuomotor learning Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 1174-1198.	0.7	79
103	An Exploratory Study of Mirror-Image Shape Discrimination in Young Children: Vision and Touch. Perceptual and Motor Skills, 1994, 78, 83-88.	0.6	7

104 Evaluation of MR-compatibility of Electrostatic Linear Motor., 0,,.

12