
Nicholas Chiorazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7671284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lg V Gene Mutation Status and CD38 Expression As Novel Prognostic Indicators in Chronic Lymphocytic Leukemia. Blood, 1999, 94, 1840-1847.	1.4	2,291
2	Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2005, 352, 804-815.	27.0	1,443
3	iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood, 2018, 131, 2745-2760.	1.4	1,069
4	Relation of Gene Expression Phenotype to Immunoglobulin Mutation Genotype in B Cell Chronic Lymphocytic Leukemia. Journal of Experimental Medicine, 2001, 194, 1639-1648.	8.5	978
5	lg V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood, 1999, 94, 1840-7.	1.4	806
6	Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors Journal of Clinical Investigation, 1998, 102, 1515-1525.	8.2	759
7	In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. Journal of Clinical Investigation, 2005, 115, 755-764.	8.2	515
8	Multiple Distinct Sets of Stereotyped Antigen Receptors Indicate a Role for Antigen in Promoting Chronic Lymphocytic Leukemia. Journal of Experimental Medicine, 2004, 200, 519-525.	8.5	370
9	Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood, 2012, 119, 4467-4475.	1.4	350
10	B CELLCHRONICLYMPHOCYTICLEUKEMIA: Lessons Learned from Studies of the B Cell Antigen Receptor. Annual Review of Immunology, 2003, 21, 841-894.	21.8	319
11	B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood, 2002, 99, 4087-4093.	1.4	294
12	Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. Journal of Clinical Investigation, 2005, 115, 1636-1643.	8.2	287
13	B cell receptor signaling in chronic lymphocytic leukemia. Trends in Immunology, 2013, 34, 592-601.	6.8	282
14	Production of autoantibodies by CD5-expressing B lymphocytes from patients with chronic lymphocytic leukemia Journal of Experimental Medicine, 1989, 169, 255-268.	8.5	270
15	Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood, 2011, 117, 1781-1791.	1.4	230
16	Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. Journal of Clinical Investigation, 2004, 113, 1008-1016.	8.2	190
17	CD38 and chronic lymphocytic leukemia: a decade later. Blood, 2011, 118, 3470-3478.	1.4	181
18	Anti-CD20/CD3 T cell–dependent bispecific antibody for the treatment of B cell malignancies. Science Translational Medicine, 2015, 7, 287ra70.	12.4	178

#	Article	IF	CITATIONS
19	Chronic Lymphocytic Leukemia Cells Recognize Conserved Epitopes Associated with Apoptosis and Oxidation. Molecular Medicine, 2008, 14, 665-674.	4.4	174
20	BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia, 2016, 30, 833-843.	7.2	160
21	Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed nonmuscle myosin heavy chain IIA: implications for patient outcome and cell of origin. Blood, 2010, 115, 3907-3915.	1.4	158
22	B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11713-11718.	7.1	154
23	Chronic lymphocytic leukemia antibodies with a common stereotypic rearrangement recognize nonmuscle myosin heavy chain IIA. Blood, 2008, 112, 5122-5129.	1.4	152
24	Intraclonal Complexity in Chronic Lymphocytic Leukemia: Fractions Enriched in Recently Born/Divided and Older/Quiescent Cells. Molecular Medicine, 2011, 17, 1374-1382.	4.4	140
25	In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood, 2009, 114, 4832-4842.	1.4	132
26	Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells Journal of Experimental Medicine, 1995, 181, 1507-1517.	8.5	130
27	Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood, 2016, 127, 1007-1016.	1.4	130
28	Identification of outcome-correlated cytokine clusters in chronic lymphocytic leukemia. Blood, 2011, 118, 5201-5210.	1.4	110
29	A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia, 2010, 24, 125-132.	7.2	109
30	Common nonmutational <i>NOTCH1</i> activation in chronic lymphocytic leukemia. Proceedings of the United States of America, 2017, 114, E2911-E2919.	7.1	108
31	Cell proliferation and death: Forgotten features of chronic lymphocytic leukemia B cells. Best Practice and Research in Clinical Haematology, 2007, 20, 399-413.	1.7	105
32	Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood. Leukemia, 2017, 31, 1340-1347.	7.2	103
33	Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematology,the, 2014, 1, e74-e84.	4.6	93
34	Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nature Communications, 2017, 8, 15746.	12.8	93
35	Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia, 2013, 27, 2196-2199.	7.2	90
36	Functional loss of ll̂ºBl̂µ leads to NF-l̂ºB deregulation in aggressive chronic lymphocytic leukemia. Journal of Experimental Medicine, 2015, 212, 833-843.	8.5	85

#	Article	IF	CITATIONS
37	Leukemia cell proliferation and death in chronic lymphocytic leukemia patients on therapy with the BTK inhibitor ibrutinib. JCI Insight, 2017, 2, e89904.	5.0	78
38	Higher-order connections between stereotyped subsets: implications for improved patient classification in CLL. Blood, 2021, 137, 1365-1376.	1.4	72
39	A role for the polymorphism at position 247 of the ?2-glycoprotein I gene in the generation of anti-?2-glycoprotein I antibodies in the antiphospholipid syndrome. Arthritis and Rheumatism, 1999, 42, 1655-1661.	6.7	70
40	Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations. Blood, 2015, 125, 856-859.	1.4	70
41	Th17 and non-Th17 interleukin-17-expressing cells in chronic lymphocytic leukemia: delineation, distribution, and clinical relevance. Haematologica, 2012, 97, 599-607.	3.5	65
42	B-Cell Chronic Lymphocytic Leukemia, a Clonal Disease of B Lymphocytes with Receptors that Vary in Specificity for (Auto)antigens. Annals of the New York Academy of Sciences, 2005, 1062, 1-12.	3.8	58
43	Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica, 2016, 101, 959-967.	3.5	57
44	<i> IGLV3-21 <i>*</i> 01 </i> is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4320-4327.	7.1	55
45	IGHV-unmutated and IGHV-mutated chronic lymphocytic leukemia cells produce activation-induced deaminase protein with a full range of biologic functions. Blood, 2012, 120, 4802-4811.	1.4	52
46	IGF1R as druggable target mediating PI3K-δ inhibitor resistance in a murine model of chronic lymphocytic leukemia. Blood, 2019, 134, 534-547.	1.4	51
47	Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells. Best Practice and Research in Clinical Haematology, 2010, 23, 33-45.	1.7	50
48	Novel Method for High-Throughput Full-Length IGHV-D-J Sequencing of the Immune Repertoire from Bulk B-Cells with Single-Cell Resolution. Frontiers in Immunology, 2017, 8, 1157.	4.8	50
49	Autoantigen can promote progression to a more aggressive TCL1 leukemia by selecting variants with enhanced B-cell receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1500-7.	7.1	49
50	Excessive antigen reactivity may underlie the clinical aggressiveness of chronic lymphocytic leukemia stereotyped subset #8. Blood, 2015, 125, 3580-3587.	1.4	49
51	Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. Blood Advances, 2016, 1, 47-61.	5.2	48
52	TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. Journal of Immunology, 2015, 195, 901-923.	0.8	47
53	EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia. Leukemia, 2017, 31, 1547-1554.	7.2	46
54	Chronic lymphocytic leukemia: A tale of one or two signals?. Cell Research, 2013, 23, 182-185.	12.0	43

#	Article	IF	CITATIONS
55	Evidence for progenitors of chronic lymphocytic leukemia B cells that undergo intraclonal differentiation and diversification. Blood, 1996, 87, 1586-1594.	1.4	41
56	IL-4 rescues surface IgM expression in chronic lymphocytic leukemia. Blood, 2016, 128, 553-562.	1.4	38
57	IGHV1-69 B Cell Chronic Lymphocytic Leukemia Antibodies Cross-React with HIV-1 and Hepatitis C Virus Antigens as Well as Intestinal Commensal Bacteria. PLoS ONE, 2014, 9, e90725.	2.5	37
58	Expression of CD5 and CD38 by human CD5â^ B cells: Requirement for special stimuli. European Journal of Immunology, 1994, 24, 1426-1433.	2.9	36
59	Evidence for differential responsiveness of human CD5+ and CD5â^' B cell subsets to T cell-independent mitogens. European Journal of Immunology, 1991, 21, 351-359.	2.9	35
60	A Selective Novel Peroxisome Proliferator-Activated Receptor (PPAR)-α Antagonist Induces Apoptosis and Inhibits Proliferation of CLL Cells In Vitro and In Vivo. Molecular Medicine, 2015, 21, 410-419.	4.4	35
61	SLAMF6 as a Regulator of Exhausted CD8+ T Cells in Cancer. Cancer Immunology Research, 2019, 7, 1485-1496.	3.4	34
62	Combined BTK and PI3Kδ Inhibition with Acalabrutinib and ACP-319 Improves Survival and Tumor Control in CLL Mouse Model. Clinical Cancer Research, 2017, 23, 5814-5823.	7.0	32
63	Implications of new prognostic markers in chronic lymphocytic leukemia. Hematology American Society of Hematology Education Program, 2012, 2012, 76-87.	2.5	31
64	Chronic lymphocytic leukemia cells diversify and differentiate in vivo via a nonclassical Th1-dependent, Bcl-6–deficient process. JCI Insight, 2016, 1, .	5.0	29
65	Chronic Lymphocytic Leukemia. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a035220.	6.2	28
66	Leukemia-cell proliferation and disease progression in patients with early stage chronic lymphocytic leukemia. Leukemia, 2017, 31, 1348-1354.	7.2	27
67	Chronic Lymphocytic Leukemia with Mutated IGHV4-34 Receptors: Shared and Distinct Immunogenetic Features and Clinical Outcomes. Clinical Cancer Research, 2017, 23, 5292-5301.	7.0	27
68	Evolving View of the In-Vivo Kinetics of Chronic Lymphocytic Leukemia B Cells. Hematology American Society of Hematology Education Program, 2006, 2006, 273-278.	2.5	25
69	Myeloid-derived suppressor cell subtypes differentially influence T-cell function, T-helper subset differentiation, and clinical course in CLL. Leukemia, 2021, 35, 3163-3175.	7.2	25
70	The involvement of microRNA in the pathogenesis of Richter syndrome. Haematologica, 2019, 104, 1004-1015.	3.5	20
71	Recognition of Antigen-Specific B-Cell Receptors from Chronic Lymphocytic Leukemia Patients by Synthetic Antigen Surrogates. Chemistry and Biology, 2014, 21, 1670-1679.	6.0	19
72	Murine Genetically Engineered and Human Xenograft Models of Chronic Lymphocytic Leukemia. Seminars in Hematology, 2014, 51, 188-205.	3.4	19

#	Article	IF	CITATIONS
73	AID Overlapping and Polî· Hotspots Are Key Features of Evolutionary Variation Within the Human Antibody Heavy Chain (IGHV) Genes. Frontiers in Immunology, 2020, 11, 788.	4.8	19
74	Musashi 2 influences chronic lymphocytic leukemia cell survival and growth making it a potential therapeutic target. Leukemia, 2021, 35, 1037-1052.	7.2	19
75	Somatic CLL mutations occur at multiple distinct hematopoietic maturation stages: documentation and cautionary note regarding cell fraction purity. Leukemia, 2018, 32, 1040-1043.	7.2	19
76	A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes. Immunologic Research, 2015, 63, 90-100.	2.9	18
77	No improvement in long-term survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy. Haematologica, 2018, 103, e158-e161.	3.5	16
78	Mechanistic Insights into CpG DNA and IL-15 Synergy in Promoting B Cell Chronic Lymphocytic Leukemia Clonal Expansion. Journal of Immunology, 2018, 201, 1570-1585.	0.8	16
79	Celebrating 20 Years of IGHV Mutation Analysis in CLL. HemaSphere, 2020, 4, e334.	2.7	16
80	Identification and characterization of distinct IL-17F expression patterns and signaling pathways in chronic lymphocytic leukemia and normal B lymphocytes. Immunologic Research, 2015, 63, 216-227.	2.9	15
81	AID in Chronic Lymphocytic Leukemia: Induction and Action During Disease Progression. Frontiers in Oncology, 2021, 11, 634383.	2.8	15
82	Chronic Lymphocytic Leukemia Monitoring with a Lamprey Idiotope-Specific Antibody. Cancer Immunology Research, 2013, 1, 223-228.	3.4	14
83	Binding of CLL Subset 4 B Cell Receptor Immunoglobulins to Viable Human Memory B Lymphocytes Requires a Distinctive IGKV Somatic Mutation. Molecular Medicine, 2017, 23, 1-12.	4.4	14
84	CXCL13 plasma levels function as a biomarker for disease activity in patients with chronic lymphocytic leukemia. Leukemia, 2021, 35, 1610-1620.	7.2	14
85	B-Cell Chronic Lymphocytic Leukemia (B-CLL) Cells Express Antibodies Reactive with Antigenic Epitopes Expressed on the Surface of Common Bacteria Blood, 2006, 108, 25-25.	1.4	13
86	Rewiring of sIgM-Mediated Intracellular Signaling through the CD180 Toll-like Receptor. Molecular Medicine, 2015, 21, 46-57.	4.4	12
87	Targeting Stereotyped B Cell Receptors from Chronic Lymphocytic Leukemia Patients with Synthetic Antigen Surrogates. Journal of Biological Chemistry, 2016, 291, 7558-7570.	3.4	12
88	Post-Transformation IGHV-IGHD-IGHJ Mutations in Chronic Lymphocytic Leukemia B Cells: Implications for Mutational Mechanisms and Impact on Clinical Course. Frontiers in Oncology, 2021, 11, 640731.	2.8	12
89	A combination of an anti-SLAMF6 antibody and ibrutinib efficiently abrogates expansion of chronic lymphocytic leukemia cells. Oncotarget, 2016, 7, 26346-26360.	1.8	12
90	Chronic lymphocytic leukemia immunoglobulins display bacterial reactivity that converges and diverges from auto-/poly-reactivity and IGHV mutation status. Clinical Immunology, 2016, 172, 44-51.	3.2	11

#	Article	IF	CITATIONS
91	An IgG1-like bispecific antibody targeting CD52 and CD20 for the treatment of B-cell malignancies. Methods, 2019, 154, 70-76.	3.8	11
92	A Detailed Analysis of Parameters Supporting the Engraftment and Growth of Chronic Lymphocytic Leukemia Cells in Immune-Deficient Mice. Frontiers in Immunology, 2021, 12, 627020.	4.8	11
93	Clinical and Laboratory Parameters That Define Clinically Relevant B-CLL Subgroups. , 2005, 294, 109-133.		11
94	Polyreactive Monoclonal Antibodies Synthesized by Some B-CLL Cells Recognize Specific Antigens on Viable and Apoptotic T Cells Blood, 2006, 108, 2813-2813.	1.4	11
95	A p53 Axis Regulates B Cell Receptor-Triggered, Innate Immune System-Driven B Cell Clonal Expansion. Journal of Immunology, 2012, 188, 6093-6108.	0.8	10
96	AID overexpression leads to aggressive murine CLL and nonimmunoglobulin mutations that mirror human neoplasms. Blood, 2021, 138, 246-258.	1.4	10
97	B cell receptor isotypes differentially associate with cell signaling, kinetics, and outcome in chronic lymphocytic leukemia. Journal of Clinical Investigation, 2022, 132, .	8.2	10
98	Effects of prostaglandin E ₂ on p53 mRNA transcription and p53 mutagenesis during Tâ€cellâ€independent human Bâ€cell clonal expansion. FASEB Journal, 2014, 28, 627-643.	0.5	9
99	Automated shape-based clustering of 3D immunoglobulin protein structures in chronic lymphocytic leukemia. BMC Bioinformatics, 2018, 19, 414.	2.6	9
100	Mechanism for IL-15–Driven B Cell Chronic Lymphocytic Leukemia Cycling: Roles for AKT and STAT5 in Modulating Cyclin D2 and DNA Damage Response Proteins. Journal of Immunology, 2019, 202, 2924-2944.	0.8	9
101	Longitudinal Analyses of CXCR4dimCD5brCD19+ Fractions of Chronic Lymphocytic Leukemia Clones Reveal Features Consistent with a Source of Clonal Heterogeneity. Blood, 2011, 118, 804-804.	1.4	9
102	On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution. Journal of Statistical Physics, 2018, 172, 143-155.	1.2	8
103	Validating The Prognostic Significance Of FCRL2 In Predicting IGHV Mutation Status, Clinical Disease Progression, and Survival In CLL. Blood, 2013, 122, 4140-4140.	1.4	8
104	FcγRIIb expression in early stage chronic lymphocytic leukemia. Leukemia and Lymphoma, 2017, 58, 2642-2648.	1.3	7
105	In Vivo modeling of Resistance to PI3KδInhibitor Treatment Using EµTCL1-Tg Tumor Transfer Model. Blood, 2016, 128, 190-190.	1.4	7
106	Fc receptor-like 2 (FCRL2) is a novel marker of low-risk CLL and refines prognostication based on IGHV mutation status. Blood Cancer Journal, 2019, 9, 47.	6.2	6
107	Measurement of Leukemic B-Cell Growth Kinetics in Patients with Chronic Lymphocytic Leukemia. Methods in Molecular Biology, 2019, 1881, 129-151.	0.9	6
108	Chronic lymphocytic leukemia–like monoclonal B-cell lymphocytosis exhibits an increased inflammatory signature that is reduced in early-stage chronic lymphocytic leukemia. Experimental Hematology, 2021, 95, 68-80.	0.4	6

#	Article	IF	CITATIONS
109	Potential Relevance of B-cell Maturation Pathways in Defining the Cell(s) of Origin for Chronic Lymphocytic Leukemia. Hematology/Oncology Clinics of North America, 2021, 35, 665-685.	2.2	6
110	Cytoplasmic myosin-exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability. Leukemia, 2016, 30, 74-85.	7.2	5
111	Inhibition of reactive oxygen species limits expansion of chronic lymphocytic leukemia cells. Leukemia, 2017, 31, 2273-2276.	7.2	5
112	CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation. Blood Advances, 2020, 4, 893-905.	5.2	5
113	Multiplex accurate sensitive quantitation (MASQ) with application to minimal residual disease in acute myeloid leukemia. Nucleic Acids Research, 2020, 48, e40-e40.	14.5	4
114	Dual Inhibition of PI3K-δ and PI3K-γ By Duvelisib Eliminates CLL B Cells, Impairs CLL-Supporting Cells, and Overcomes Ibrutinib Resistance in a Patient-Derived Xenograft Model. Blood, 2018, 132, 4420-4420.	1.4	4
115	CLL B Cells Develop Resistance to Ibrutinib By Reinvigorating the IL-4R - IL-4 Axis Blocked By Bruton's Tyrosine Kinase Inhibitors Including Acalabrutinib and Zanubrutinib. Blood, 2019, 134, 477-477.	1.4	4
116	Engraftment of CLL-Derived T Cells in NSG Mice Is Feasible, Can Support CLL Cell Proliferation, and Eliminates the Need for Third Party Antigen Presenting Cells. Blood, 2011, 118, 975-975.	1.4	4
117	The Number of Overlapping AID Hotspots in Germline IGHV Genes Is Inversely Correlated with Mutation Frequency in Chronic Lymphocytic Leukemia. PLoS ONE, 2017, 12, e0167602.	2.5	4
118	B-Cell Chronic Lymphocytic Leukemia (B-CLL) Cells Unresponsive to CD180 Ligation Fail to Respond to Anti-IgM Stimulation as Well. Blood, 2010, 116, 3582-3582.	1.4	4
119	Ultra-Deep Sequencing of De Novo IGHV Mutations in Activated CLL Cells: Evidence for Activation-Induced Deaminase Function Blood, 2012, 120, 2545-2545.	1.4	4
120	Multi-Parameter Phenotypic Analysis of Members of Chronic Lymphocytic Leukemia Clones Identifies Distinct Proliferative and Resting/Re-Entry Compartments with Discrete Gene Expression Profiles Blood, 2009, 114, 668-668.	1.4	3
121	Evidence for Allelic Exclusion of p53 within Single Sorted Human B Cells. Blood, 2011, 118, 1122-1122.	1.4	3
122	Ibrutinib Inhibits Concomitant TLR and BCR- Driven Proliferation of Chronic Lymphocytic Leukemia Cells and Overrides the Supportive Survival-Promoting Effects of Microenvironmental Signals. Blood, 2014, 124, 3310-3310.	1.4	3
123	Expression and function of cathelicidin hCAP18/LL-37 in chronic lymphocytic leukemia. Haematologica, 2020, 105, e465-469.	3.5	3
124	Efficacy and Safety of Hydroxychloroquine Sulphate In Chronic Lymphocytic Leukemia: Clinical Trial Experience In Untreated Patients. Blood, 2010, 116, 1392-1392.	1.4	3
125	Generation of stable human autoantibody-secreting B cell hybridomas. Molecular Biology Reports, 1992, 16, 65-73.	2.3	2
126	Expression Levels of a Single Gene, Lymphoid Enhancer Binding Factor 1, Discriminates CLL B-Cells from Other B-Cell Malignancies Blood, 2007, 110, 1113-1113.	1.4	2

#	Article	IF	CITATIONS
127	Identification of Distinct Cytokine and Chemokine Clusters That Correlate with Outcome In B-Cell Chronic Lymphocytic Leukemia: Implications for Disease Pathogenesis. Blood, 2010, 116, 1368-1368.	1.4	2
128	Murine TCL1 CLL Cells with B-Cell Receptors Specific for the Autoantigen Phosphatidylcholine Have a Selective Advantage During Adoptive Transfer. Blood, 2010, 116, 373-373.	1.4	2
129	In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues. Blood, 2014, 124, 1948-1948.	1.4	2
130	Association of CXCR4 with IgM and IgD BCR Isotypes: Role in B Cell Malignancies. Blood, 2018, 132, 1852-1852.	1.4	2
131	Activated CLL cells regulate IL-17F–producing Th17 cells in miR155-dependent and outcome-specific manners. JCI Insight, 2022, 7, .	5.0	2
132	Impact of the Types and Relative Quantities of IGHV Gene Mutations in Predicting Prognosis of Patients With Chronic Lymphocytic Leukemia. Frontiers in Oncology, 0, 12, .	2.8	2
133	A spoonful of sugar helps lymphoma cells go up. Blood, 2015, 125, 3215-3216.	1.4	1
134	FcγRIIb-BCR coligation inhibits BCR signaling in chronic lymphocytic leukemia. Haematologica, 2020, 106, 306-309.	3.5	1
135	Expression of Angiogenin in Normal B Lymphocytes and B-CLL Cells Blood, 2005, 106, 1188-1188.	1.4	1
136	FCRL2 Expression Is Predictive of IgVH Mutation Status and Clinical Progression in Chronic Lymphocytic Leukemia Blood, 2007, 110, 488-488.	1.4	1
137	DNA Hypomethylation Leads to Aberrant Expression of PD-1 in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 3504-3504.	1.4	1
138	CLL Sera Drive Maturation of Normal Monocytes to M2-like Macrophages By Direct and Indirect Mechanisms. Blood, 2014, 124, 1970-1970.	1.4	1
139	Reappraising Immunoglobulin Repertoire Restrictions in Chronic Lymphocytic Leukemia: Focus on Major Stereotyped Subsets and Closely Related Satellites. Blood, 2016, 128, 4376-4376.	1.4	1
140	The BCRs Expressed by Leukemia Cells from TCL1 Transgenic Mice Resemble Those of Unmutated B-CLL Blood, 2005, 106, 49-49.	1.4	1
141	Definition of a Prognostic Scoring System for Predicting Clinical Outcome in B-Cell Chronic Lymphocytic Leukemia Blood, 2006, 108, 2328-2328.	1.4	1
142	Efficiency of BCR: Anti-BCR Interaction Dictates Cellular Outcomes of Signaling in Chronic Lymphocytic Leukemia Cells. Blood, 2008, 112, 3122-3122.	1.4	1
143	Different Expression of FcgammaRIIb in Chronic Lymphocytic Leukemia and Human Normal B Lymphocytes. Blood, 2008, 112, 3134-3134.	1.4	1
144	TLR-9 and B-Cell Antigen Receptor Triggering of Primary B Cells From Mantle Cell Lymphoma Induce Cell Proliferation and Telomerase Activity,. Blood, 2011, 118, 3690-3690.	1.4	1

#	Article	IF	CITATIONS
145	Lenalidomide Promotes The Expansion Of CD8 T Cells With An Effector Memory Phenotype In a Murine Xenograft Model Of Chronic Lymphocytic Leukemia. Blood, 2013, 122, 119-119.	1.4	1
146	Possible Role of Cytokines in the Pathogenesis of Non-Organ Specific Autoimmunity. International Journal of Immunopathology and Pharmacology, 1992, 5, 149-154.	2.1	0
147	Aberrant somatic hypermutation and lymphomagenesis. Blood, 2003, 102, 1564-1565.	1.4	0
148	PATTERNS OF DUVELISIB-INDUCED LYMPHOCYTOSIS IN PATIENTS WITH R/R CLL OR SLL INCLUDING THOSE WITH HIGH-RISK FACTORS TREATED IN THE DUO TRIAL. Hematological Oncology, 2019, 37, 216-217.	1.7	0
149	Ig V gene mutation status correlates well with clinical course and outcome regardless of surface membrane isotype expressed by B-CLL cells. Journal of Clinical Oncology, 2004, 22, 6562-6562.	1.6	Ο
150	IGHV Gene Replacement in B-Cell Chronic Lymphocytic Leukemia (B-CLL) Occurs at a Frequency Similar to That in Normal B Cells and May Augment Clonal Expansion by Permitting Autogenic/Microbial Clonal Stimulation Blood, 2006, 108, 2086-2086.	1.4	0
151	Remarkable Differences in Cellular Activation State and Migratory and Proliferative Potential among Clonal Cells Derived from Different Tissues of Chronic Lymphocytic Leukemia Patients Blood, 2006, 108, 2817-2817.	1.4	Ο
152	Genome Analysis of CLL by Representational Oligonucleotide Microarray Analysis (ROMA) Blood, 2006, 108, 2085-2085.	1.4	0
153	B-CLL Antibodies Encoded by Stereotypic VH1-69, D3-16, and JH3 Rearrangements Immunoprecipitate Non-Muscle Myosin Heavy Chain IIA Blood, 2007, 110, 739-739.	1.4	Ο
154	High-Resolution Array-Based Comparative Genome Hybridization (CGH) Identifies Novel and Recurrent Regions in CLL Blood, 2008, 112, 2058-2058.	1.4	0
155	Frequently Occurring B-CLL Antibodies Recognize Apoptotic Cells That Expose Non-Muscle Myosin Heavy Chain IIA. Blood, 2008, 112, 3123-3123.	1.4	Ο
156	Improved Prognosis of Chronic Lymphocytic Leukemia (CLL) Patients with Increased IgVH Mutations May Reflect Greater Alteration of the B-Cell Receptor (BCR) Binding Site. Blood, 2008, 112, 3152-3152.	1.4	0
157	Elevated Binding of Chronic Lymphocytic Leukemia Antibody to a Subset of Apoptotic Cells with Exposed Non-Muscle Myosin Heavy Chain IIA Correlates with Poor Patient Outcome Blood, 2009, 114, 799-799.	1.4	Ο
158	Provision of Human Multimeric sCD40L to Immune Deficient NSG Mice Permits Efficient and Effective Adoptive Transfer and Proliferation of CLL Cells In Vivo. Blood, 2010, 116, 2430-2430.	1.4	0
159	Detection of Activation-Induced Cytidine Deaminase RNA In CLL Cells Correlates with Shorter Patient Survival and High Numbers of CD38+ Cells. Blood, 2010, 116, 2415-2415.	1.4	Ο
160	Chronic Lymphocytic Leukemia B Cells Variably Express Functional Activation-Induced Cytosine Deaminase Protein. Blood, 2010, 116, 378-378.	1.4	0
161	Some CLL Cells Bind Myosin-Exposed Apoptotic Cells. Exposure of Cytoplasmic Myosin Results From Transfer of Caspase-3 Dependent Cleavage Products to the Outer Cell Membrane. Blood, 2010, 116, 3900-3900.	1.4	Ο
162	Differential Expression Genes of CLL Subgroups Defined by Ki67 Expression Level Which Correlated with Clinical Outcome. Blood, 2010, 116, 2435-2435.	1.4	0

#	Article	IF	CITATIONS
163	Targeted Oligonucleotide Array Assessment of Genomic Copy Number Alterations for Risk Stratification in Chronic Lymphocytic Leukemia. Blood, 2011, 118, 1773-1773.	1.4	0
164	Btk Inhibitor, PCI-32765, Delays CLL Progression in a TCL1 Adoptive Transfer Model by Impairing Migration and Cell Proliferation. Blood, 2011, 118, 982-982.	1.4	0
165	CLL Cell Viability Promoted by Myosin Heavy Chain IIA Exposed Apoptotic Cells is BTK-dependent. Blood, 2012, 120, 1767-1767.	1.4	Ο
166	Direct in Vivo Evidence of Increased Chronic Lymphocytic Leukemia Cell Proliferation in Lymph Nodes Compared to Bone Marrow and Peripheral Blood. Blood, 2012, 120, 184-184.	1.4	0
167	Apparent Involvement Of The Interferon, RNA Processing, and Wnt Signaling Pathways In Monoclonal B Lymphocytosis. Blood, 2013, 122, 4157-4157.	1.4	Ο
168	Chronic Lymphocytic Leukemia Patients Exhibit Expanded Functional Granulocyte-like Myeloid Derived Suppressor Cells. Blood, 2014, 124, 3279-3279.	1.4	0
169	TLR-9 and IL-15-Driven Clonal Expansion of B-CLL Cells. Blood, 2014, 124, 1937-1937.	1.4	Ο
170	Overexpression of Activation-Induced Deaminase in TCL1 Mice Leads to the Development of IGHV -Mutated and -Unmutated CLL Clones That Resemble Unique Subsets of Human CLL. Blood, 2015, 126, 1710-1710.	1.4	0
171	The RNA Binding Protein Musashi 2 Is up-Regulated in the Proliferative B-Cell Fraction of Chronic Lymphocytic Leukemia Clones. Blood, 2015, 126, 4149-4149.	1.4	Ο
172	EGR2 Mutations in Chronic Lymphocytic Leukemia: A New Bad Player. Blood, 2015, 126, 4126-4126.	1.4	0
173	CLL with Mutated IGHV4-34 Antigen Receptors Is Clinically Heterogeneous: Antigen Receptor Stereotypy Makes the Difference. Blood, 2015, 126, 5263-5263.	1.4	0
174	Musashi 2 Is Overexpressed in Poor Outcome CLL Patients and Their Proliferative Fraction and Silencing This Gene Induces Apoptosis and Increases Cell Adhesion and Movement. Blood, 2018, 132, 1837-1837.	1.4	0
175	Activated CLL B Cells Variably Modulate microRNA-155 Levels in NaÃ ⁻ ve CD4+ T Cells, and the Direction and Magnitude of microRNA-155 Change Correlates with Th17 Levels and Clinical Course. Blood, 2018, 132, 4402-4402.	1.4	0
176	CLL Intraclonal Fractions Defined By Time Since Cell Birth/Division Promote a Leukemia-Supportive, Immune-Tolerant Microenvironment By Distinct Mechanisms. Blood, 2018, 132, 1836-1836.	1.4	0
177	Serum IgM/Fcmr Interactions Inhibit BCR Signaling and Influence the Cinical Course of CLL. Blood, 2018, 132, 4409-4409.	1.4	Ο
178	Chronic Lymphocytic Leukemia B Cells Display IgM and IgD Isotype-Restricted Features That Affect Association with Co-Receptors, BCR Signaling, and Leukemic B-Cell Growth In Vivo. Blood, 2018, 132, 3124-3124.	1.4	0
179	Gene Expression and Cytokine Analyses Identify Markers of Progression from CLL-like Monoclonal B-Cell Lymphocytosis to Chronic Lymphocytic Leukemia. Blood, 2019, 134, 3027-3027.	1.4	0
180	Deciphering the CXCL9-CXCL10-CXCL11/CXCR3 Axis in CLL-like Monoclonal B-Cell Lymphocytosis and Chronic Lymphocytic Leukemia: A New Target for Immune Activation?. Blood, 2019, 134, 3029-3029.	1.4	0

#	Article	IF	CITATIONS
181	Serum Proteomic Analyses Suggest That the HMGB1 and Other Inflammatory Pathways Are Operational in MBL and Are Less in Overt CLL. Blood, 2021, 138, 2625-2625.	1.4	Ο
182	Efficacy of Ibrutinib Monotherapy in Pre-Clinical Mouse Models of Richter Transformation: Ibrutinib Effectively Reduces the Incidence of Richter Transformation but Fails in Treating Transformed Lymphoma, Especially in Primary Lymphoid Tissue. Blood, 2021, 138, 3708-3708.	1.4	0
183	Analyses of the Kinetics and Phenotype of Multiple Intraclonal CXCR4/CD5 B Cell Subsets Suggest Differences in Life Cycle Transitioning in CLL. Blood, 2021, 138, 2622-2622.	1.4	0
184	lg V gene mutation status correlates well with clinical course and outcome regardless of surface membrane isotype expressed by B-CLL cells. Journal of Clinical Oncology, 2004, 22, 6562-6562.	1.6	0