J-P Boeuf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7671090/publications.pdf

Version: 2024-02-01

214 11,282 57 101
papers citations h-index g-index

214 214 214 4004 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ionization waves (striations) in a low-current plasma column revisited with kinetic and fluid models. Physics of Plasmas, 2022, 29, .	0.7	12
2	Ionization Waves (Striations) in a Low-Current Plasma Column Revisited. , 2022, , .		0
3	Rotating Spokes in Low Temperature ExB Plasmas. , 2022, , .		0
4	2D radial-azimuthal particle-in-cell benchmark for E $\tilde{A}-$ B discharges. Plasma Sources Science and Technology, 2021, 30, 075002.	1.3	44
5	Space-Time Plasma-Steering Source: Control of Microwave Plasmas in Overmoded Cavities. Physical Review Applied, 2021, 16, .	1.5	3
6	Missions du futur et nouveaux concepts en propulsion plasma. , 2021, , 24-30.	0.1	0
7	E \tilde{A}— B electron drift current across the aperture of an ion source surrounded by a cusped magnetic field profile. Physics of Plasmas, 2020, 27, .	0.7	4
8	New insights into the physics of rotating spokes in partially magnetized E $ ilde{A}$ —B plasmas. Physics of Plasmas, 2020, 27, .	0.7	15
9	Physics of E × B discharges relevant to plasma propulsion and similar technologies. Physics of Plasmas, 2020, 27, .	0.7	89
10	Rotating Spokes, Ionization Instability, and Electron Vortices in Partially Magnetized E×B Plasmas. Physical Review Letters, 2020, 124, 185005.	2.9	30
11	Experimental characterization of ID-Hall, a double stage Hall thruster with an inductive ionization stage. Physics of Plasmas, 2020, 27, 023518.	0.7	3
12	Magnetic cusp confinement in low- \hat{l}^2 plasmas revisited. Physics of Plasmas, 2020, 27, .	0.7	5
13	Micro instabilities and rotating spokes in the near-anode region of partially magnetized plasmas. Physics of Plasmas, 2019, 26, 072113.	0.7	19
14	2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas. Plasma Sources Science and Technology, 2019, 28, 105010.	1.3	72
15	A Multiscale Approach Using Patches of Finite Elements for Solving Wave Propagation Problems in Microwave Discharge Plasma. Frontiers in Physics, 2019, 7, .	1.0	2
16	Modeling of negative ion extraction from a magnetized plasma source: Derivation of scaling laws and description of the origins of aberrations in the ion beam. Physics of Plasmas, 2018, 25, 023510.	0.7	21
17	ID-HALL, a new double stage Hall thruster design. I. Principle and hybrid model of ID-HALL. Physics of Plasmas, 2018, 25, .	0.7	9
18	ID-HALL, a new double stage Hall thruster design. II. Experimental characterization of the inductive ionization source. Physics of Plasmas, 2018, 25, .	0.7	3

#	Article	IF	CITATIONS
19	E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory. Physics of Plasmas, 2018, 25, .	0.7	86
20	Preface to Special Topic: Modern issues and applications of E × B plasmas. Physics of Plasmas, 2018, 2 061001.	⁵ ʻo.7	10
21	Reply to Comment on †Issues in the understanding of negative ion extraction for fusion'. Plasma Sources Science and Technology, 2017, 26, 058002.	1.3	2
22	Modeling of plasma transport and negative ion extraction in a magnetized radio-frequency plasma source. New Journal of Physics, 2017, 19, 015002.	1.2	61
23	Hollow cathode modeling: II. Physical analysis and parametric study. Plasma Sources Science and Technology, 2017, 26, 055008.	1.3	38
24	Hollow cathode modeling: I. A coupled plasma thermal two-dimensional model. Plasma Sources Science and Technology, 2017, 26, 055007.	1.3	47
25	Tutorial: Physics and modeling of Hall thrusters. Journal of Applied Physics, 2017, 121, .	1.1	326
26	Negative ion extraction via particle simulation for fusion: critical assessment of recent contributions. Nuclear Fusion, 2017, 57, 014003.	1.6	13
27	Plasma fluid modeling of microwave streamers: Approximations and accuracy. Physics of Plasmas, 2017, 24, 113517.	0.7	16
28	Appropriate use of the particle-in-cell method in low temperature plasmas: Application to the simulation of negative ion extraction. Journal of Applied Physics, 2016, 120, .	1.1	24
29	Negative ion source development for a photoneutralization based neutral beam system for future fusion reactors. New Journal of Physics, 2016, 18, 125005.	1.2	39
30	Issues in the understanding of negative ion extraction for fusion. Plasma Sources Science and Technology, 2016, 25, 045010.	1.3	36
31	Gas heating effects on the formation and propagation of a microwave streamer in air. Journal of Applied Physics, $2015,118,.$	1.1	31
32	Plasma properties of the cybele negative ion source for fusion applications: PIC simulations and experiments. , 2015 , , .		0
33	Collisionless electron heating in a surface-wave discharge. , 2015, , .		O
34	Gas heating and shockwave effects on microwave streamer development in atmospheric pressure air. , $2015, \ldots$		0
35	Developpment of a hybrid MPI/OpenMP massivelly parallel 3D particle-in-cell model of a magnetized plasma source. , 2015, , .		3
36	Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry. Plasma Sources Science and Technology, 2015, 24, 055001.	1.3	21

#	Article	IF	CITATIONS
37	R&D around a photoneutralizer-based NBI system (Siphore) in view of a DEMO Tokamak steady state fusion reactor. Nuclear Fusion, 2015, 55, 123020.	1.6	50
38	ADI-FDTD modeling of microwave plasma discharges in air towards fully three-dimensional simulations. Computer Physics Communications, 2015, 195, 49-60.	3.0	43
39	Hollow cathodes for hall thrusters: Modelling and scaling trends. , 2015, , .		0
40	Characterization of negative ion beam extracted from a negative ion source with a particle-in-cell model., 2015,,.		0
41	Three dimensional simulations of pattern formation during high-pressure, freely localized microwave breakdown in air. Physics of Plasmas, 2014, 21, 123513.	0.7	70
42	Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a 3D Particle-In-Cell Monte Carlo Collisions model., 2014,,.		1
43	Plasma asymmetry due to the magnetic filter in fusion-type negative ion sources: Comparisons between two and three-dimensional particle-in-cell simulations. Physics of Plasmas, 2014, 21, .	0.7	27
44	Chemical kinetics of low pressure high density hydrogen plasmas: application to negative ion sources for ITER. Plasma Sources Science and Technology, 2014, 23, 065032.	1.3	30
45	Pattern formation and dynamics of plasma filaments in dielectric barrier discharges. Plasma Sources Science and Technology, 2014, 23, 054003.	1.3	73
46	Rotating structures in low temperature magnetized plasmasââ,¬â€insight from particle simulations. Frontiers in Physics, 2014, 2, .	1.0	90
47	Les sources d'ions négatifs pour le chauffage par injection d'atomes à haute énergie dans les plasma de fusion. , 2014, , 15-19.	S _{0.1}	0
48	Particle-In-Cell Monte Carlo Collision Model on GPUâ€"Application to a Low-Temperature Magnetized Plasma. IEEE Transactions on Plasma Science, 2013, 41, 391-399.	0.6	17
49	Rotating Instability in Low-Temperature Magnetized Plasmas. Physical Review Letters, 2013, 111, 155005.	2.9	71
50	Dynamics of a guided streamer (†plasma bullet†M) in a helium jet in air at atmospheric pressure. Journal Physics D: Applied Physics, 2013, 46, 015201.	1.3	284
51	Numerical Simulation of Plasma Actuators for Flow Control. , 2013, , .		O
52	Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model. Physics of Plasmas, 2013, 20, .	0.7	34
53	PhénomÃ"nes d'auto-organisation dans les plasmas froids hors équilibre. , 2013, , 16-21.	0.1	1
54	Numerical study of the characteristics of the ion and fast atom beams in an end-Hall ion source. Journal of Applied Physics, 2012, 112, .	1.1	7

#	Article	IF	CITATIONS
55	Numerical modelling of plasma for flow control in aerospace applications. , 2012, , .		O
56	Physics of a magnetic filter for negative ion sources. I. Collisional transport across the filter in an ideal, 1D filter. Physics of Plasmas, 2012, 19 , .	0.7	53
57	Physics of a magnetic filter for negative ion sources. II. E × B drift through the filter in a real geometry. Physics of Plasmas, 2012, 19, .	0.7	57
58	Modeling a high power fusion plasma reactor-type ion source: Applicability of particle methods. Physics of Plasmas, 2012, 19, .	0.7	28
59	The 2012 Plasma Roadmap. Journal Physics D: Applied Physics, 2012, 45, 253001.	1.3	511
60	Generation, annihilation, dynamics and self-organized patterns of filaments in dielectric barrier discharge plasmas. Applied Physics Letters, 2012, 100, 244108.	1.5	83
61	Physics of a magnetic barrier in low-temperature bounded plasmas: insight from particle-in-cell simulations. Plasma Sources Science and Technology, 2012, 21, 025002.	1.3	35
62	Finite Volume Time Domain modelling of microwave breakdown and plasma formation in a metallic aperture. Computer Physics Communications, 2012, 183, 1634-1640.	3.0	10
63	Effects of pressure and incident power on self-organization pattern structure during microwave breakdown in high pressure air. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 235202.	0.2	5
64	lonization–diffusion plasma front propagation in a microwave field. Plasma Sources Science and Technology, 2011, 20, 035007.	1.3	62
65	Evidence of a new form of self-organization in DBD Plasmas: the quincunx structure. Journal Physics D: Applied Physics, 2011, 44, 262002.	1.3	46
66	Physics and modeling of an end-Hall (gridless) ion source. Journal of Applied Physics, 2011, 109, .	1.1	24
67	Physics and modelling of microwave streamers at atmospheric pressure. Journal of Applied Physics, 2011, 110, .	1.1	58
68	Model of an inductively coupled negative ion source: I. General model description. Plasma Sources Science and Technology, 2011, 20, 015001.	1.3	71
69	Model of an inductively coupled negative ion source: II. Application to an ITER type source. Plasma Sources Science and Technology, 2011, 20, 015002.	1.3	98
70	Microhollow cathode sustained discharges: comparative studies in micro- and equivalent macro-cell geometries. European Physical Journal D, 2010, 60, 581-587.	0.6	9
71	Multi-scale gas discharge simulations using asynchronous adaptive mesh refinement. Computer Physics Communications, 2010, 181, 247-258.	3.0	14
72	Reconfigurable electromagnetic band gap device using plasma as a localized tunable defect. Applied Physics Letters, 2010, 96, .	1.5	36

#	Article	IF	CITATIONS
73	Modeling of breakdown during the post-arc phase of a vacuum circuit breaker. Plasma Sources Science and Technology, 2010, 19, 065020.	1.3	26
74	Pattern formation and propagation during microwave breakdown. Physics of Plasmas, 2010, 17, 123505.	0.7	90
75	Theory and Modeling of Self-Organization and Propagation of Filamentary Plasma Arrays in Microwave Breakdown at Atmospheric Pressure. Physical Review Letters, 2010, 104, 015002.	2.9	184
76	Computational Studies of Filamentary Pattern Formation in a High Power Microwave Breakdown Generated Air Plasma. IEEE Transactions on Plasma Science, 2010, 38, 2281-2288.	0.6	81
77	Post-arc period of vacuum circuit breakers: New 2D simulation and experimental results. , 2010, , .		4
78	Modeling and comparison of sinusoidal and nanosecond pulsed surface dielectric barrier discharges for flow control. Plasma Physics and Controlled Fusion, 2010, 52, 124019.	0.9	60
79	Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker. Journal of Applied Physics, 2009, 106, .	1.1	29
80	Performance Modeling of a Thrust Vectoring Device for Hall Effect Thrusters. Journal of Propulsion and Power, 2009, 25, 1003-1012.	1.3	10
81	Method to obtain the electric field and the ionization frequency from laser induced fluorescence measurements. Plasma Sources Science and Technology, 2009, 18, 034008.	1.3	23
82	Positive and negative sawtooth signals applied to a DBD plasma actuator $\hat{a} \in \text{``influence on the electric wind. Journal of Electrostatics, 2009, 67, 140-145.}$	1.0	54
83	Contribution of positive and negative ions to the electrohydrodynamic force in a dielectric barrier discharge plasma actuator operating in air. Journal of Applied Physics, 2009, 106, .	1.1	112
84	Particle-in-cell with Monte Carlo collision modeling of the electron and negative hydrogen ion transport across a localized transverse magnetic field. Physics of Plasmas, 2009, 16, .	0.7	29
85	Modelling of a nanosecond surface discharge actuator. Journal Physics D: Applied Physics, 2009, 42, 194017.	1.3	199
86	Hexagonal and honeycomb structures in Dielectric Barrier Discharges. EPJ Applied Physics, 2009, 47, 22808.	0.3	47
87	Empirical electron cross-field mobility in a Hall effect thruster. Applied Physics Letters, 2009, 95, .	1.5	29
88	Modelling of a dipolar microwave plasma sustained by electron cyclotron resonance. Journal Physics D: Applied Physics, 2009, 42, 194019.	1.3	41
89	Ignition of Microcathode Sustained Discharge. IEEE Transactions on Plasma Science, 2008, 36, 1236-1237.	0.6	11
90	Physics, simulation and diagnostics of Hall effect thrusters. Plasma Physics and Controlled Fusion, 2008, 50, 124041.	0.9	70

#	Article	IF	Citations
91	Model description of surface dielectric barrier discharges for flow control. Journal Physics D: Applied Physics, 2008, 41, 095205.	1.3	91
92	Modeling of Dielectric Barrier Discharge and Coupling with Computational Fluid Dynamics. , 2008, , .		3
93	New Insights in the Physics of DBD Plasma Actuators for Flow Control. , 2008, , .		13
94	Numerical Model of an Argon Atmospheric Pressure RF Discharge. IEEE Transactions on Plasma Science, 2008, 36, 2782-2787.	0.6	91
95	Simulations of a Miniaturized Cylindrical Hall Thruster. IEEE Transactions on Plasma Science, 2008, 36, 2034-2042.	0.6	13
96	Plasma decay modeling during the post-arc phase of a vacuum circuit breaker. , 2008, , .		6
97	Modeling of an advanced concept of a double stage Hall effect thruster. Physics of Plasmas, 2008, 15, .	0.7	14
98	Calculation Of A Micro Discharge Energy Balance With PIC-MCC Method. AIP Conference Proceedings, 2008, , .	0.3	3
99	Expanding sheath in a bounded plasma in the context of the post-arc phase of a vacuum arc. Journal Physics D: Applied Physics, 2008, 41, 015203.	1.3	53
100	Modeling of an Inductive Negative Ion Source for Neutral Beam Injection. AIP Conference Proceedings, 2008, , .	0.3	1
101	Experimental protocol and critical assessment of the Pockels method for the measurement of surface charging in a dielectric barrier discharge. Journal Physics D: Applied Physics, 2008, 41, 135204.	1.3	18
102	Electron Trajectories in a Hall Effect Thruster Anomalous Transport Induced by an Azimuthal Wave. IEEE Transactions on Plasma Science, 2008, 36, 1212-1213.	0.6	3
103	Two-Dimensional Simulation of the Post-Arc Phase of a Vacuum Circuit Breaker. IEEE Transactions on Plasma Science, 2008, 36, 1046-1047.	0.6	24
104	Special Issue on Plasma Propulsion. IEEE Transactions on Plasma Science, 2008, 36, 1962-1966.	0.6	6
105	Model analysis of a double-stage Hall effect thruster with double-peaked magnetic field and intermediate electrode. Physics of Plasmas, 2007, 14, 113502.	0.7	16
106	Singlet oxygen production in a microcathode sustained discharge. Applied Physics Letters, 2007, 90, 031501.	1.5	27
107	EHD Force in Dielectric Barrier Discharges Parametric Study and Influence of Negative Ions., 2007,,.		26
108	Electrohydrodynamic force and scaling laws in surface dielectric barrier discharges. Applied Physics Letters, 2007, 90, 051502.	1.5	30

#	Article	IF	Citations
109	Propagating double layers in electronegative plasmas. Physics of Plasmas, 2007, 14, 053508.	0.7	35
110	A better understanding of microcathode sustained discharges. Plasma Physics and Controlled Fusion, 2007, 49, B233-B238.	0.9	20
111	An asynchronous scheme with local time stepping for multi-scale transport problems: Application to gas discharges. Journal of Computational Physics, 2007, 227, 898-918.	1.9	32
112	Electrohydrodynamic force in dielectric barrier discharge plasma actuators. Journal Physics D: Applied Physics, 2007, 40, 652-662.	1.3	280
113	Formation and stabilisation of single current filaments in planar dielectric barrier discharge. European Physical Journal D, 2007, 44, 133-139.	0.6	33
114	Measurements of the Space and Time Evolution of the Surface Charge in a Dielectric Barrier Discharge \hat{A} — Comparisons with Results from Simulations., 2007,,.		0
115	Measurement and 3D Simulation of Self-Organized Filaments in a Barrier Discharge. Physical Review Letters, 2006, 96, 255001.	2.9	147
116	Ion and neutral energy distributions to the MgO surface and sputtering rates in plasma display panel cells. IEEE Transactions on Plasma Science, 2006, 34, 351-359.	0.6	24
117	Anomalous conductivity and secondary electron emission in Hall effect thrusters. Journal of Applied Physics, 2006, 100, 123301.	1.1	38
118	Properties of plasmas generated in microdischarges. Plasma Physics and Controlled Fusion, 2006, 48, B391-B397.	0.9	29
119	Flexible variable-specific-impulse electric propulsion systems for planetary missions. Acta Astronautica, 2006, 59, 931-945.	1.7	14
120	Anomalous cross field electron transport in a Hall effect thruster. Applied Physics Letters, 2006, 89, 161503.	1.5	81
121	Guest Editorial Special Issue on Plasma Display Panels. IEEE Transactions on Plasma Science, 2006, 34, 266-267.	0.6	1
122	Modeling of double stage Hall effect thruster. IEEE Transactions on Plasma Science, 2005, 33, 522-523.	0.6	13
123	Experimental investigations of glow discharges in hollow cathode geometries at low pressure. IEEE Transactions on Plasma Science, 2005, 33, 384-385.	0.6	3
124	One-dimensional simulation of an ion beam generated by a current-free double-Layer. IEEE Transactions on Plasma Science, 2005, 33, 334-335.	0.6	18
125	Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge. Journal of Applied Physics, 2005, 97, 103307.	1.1	295
126	Predicted properties of microhollow cathode discharges in xenon. Applied Physics Letters, 2005, 86, 071501.	1.5	130

#	Article	IF	Citations
127	Discharge characteristics in plasma display cell at high frequency. Chinese Physics B, 2004, 13, 1907-1912.	1.3	9
128	Modelling of Stationary Plasma Thrusters. Contributions To Plasma Physics, 2004, 44, 529-535.	0.5	18
129	Physical investigations and developments of Hall plasma thrusters. Plasma Physics and Controlled Fusion, 2004, 46, B407-B421.	0.9	21
130	Optimized atom injection in a Hall effect thruster. Applied Physics Letters, 2004, 85, 5460-5462.	1.5	13
131	Critical assessment of a two-dimensional hybrid Hall thruster model: Comparisons with experiments. Physics of Plasmas, 2004, 11, 3035-3046.	0.7	112
132	Large-gap AC coplanar plasma display cells: macro-cell experiments and 3-D simulations. IEEE Transactions on Plasma Science, 2003, 31, 422-428.	0.6	51
133	Plasma display panels: physics, recent developments and key issues. Journal Physics D: Applied Physics, 2003, 36, R53-R79.	1.3	514
134	Large gap plasma display cell with auxiliary electrodes: macro-cell experiments and two-dimensional modelling. Journal Physics D: Applied Physics, 2003, 36, 1959-1966.	1.3	15
135	Improvement of PDP discharge efficiency based on macro-cell studies. Journal of the Society for Information Display, 2003, $11,551.$	0.8	2
136	Model study of the influence of the magnetic field configuration on the performance and lifetime of a Hall thruster. Physics of Plasmas, 2003, 10, 4886-4892.	0.7	89
137	Role of anomalous electron transport in a stationary plasma thruster simulation. Journal of Applied Physics, 2003, 93, 67-75.	1.1	114
138	Study of efficacy in a mercury-free flat discharge fluorescent lamp using a zero-dimensional positive column model. Journal Physics D: Applied Physics, 2003, 36, 512-521.	1.3	31
139	A fluid model for colloidal plasmas under microgravity conditions. New Journal of Physics, 2003, 5, 32-32.	1.2	91
140	Physical phenomena in a coplanar macroscopic plasma display cell I. Infrared and visible emission. Journal of Applied Physics, 2002, 91, 992-999.	1.1	59
141	Modeling of the plasma jet of a stationary plasma thruster. Journal of Applied Physics, 2002, 91, 9521.	1.1	23
142	Numerical simulation of electron transport in the channel region of a stationary plasma thruster. Plasma Sources Science and Technology, 2002, 11, 104-114.	1.3	15
143	Modeling of a Magnetized Plasma: The Stationary Plasma Thruster. , 2002, , 85-100.		0
144	Two-dimensional model of a stationary plasma thruster. Journal of Applied Physics, 2002, 91, 5592-5598.	1.1	142

#	Article	IF	Citations
145	Physical phenomena in a coplanar macroscopic plasma display cell. II. Comparisons between experiments and models. Journal of Applied Physics, 2002, 91, 1000-1007.	1.1	16
146	Calculated characteristics of radio-frequency plasma display panel cells including the influence of xenon metastables. Journal of Applied Physics, 2002, 92, 6990-6997.	1.1	11
147	Imaging of a macroscopic plasma display panel cell. IEEE Transactions on Plasma Science, 2002, 30, 186-187.	0.6	10
148	Efficiency of AC plasma display panels from diagnostics and models. Applied Surface Science, 2002, 192, 299-308.	3.1	16
149	Space and time evolution of the plasma in a PDP cell: Comparisons between simulations and experiments. Journal of the Society for Information Display, 2001, 9, 273.	0.8	0
150	Computation of Hall Thruster Performance. Journal of Propulsion and Power, 2001, 17, 772-779.	1.3	38
151	Hybrid and particle-in-cell models of a stationary plasma thruster. Plasma Sources Science and Technology, 2000, 9, 219-226.	1.3	41
152	Calculated gas temperature profiles in argon glow discharges. Journal of Applied Physics, 2000, 88, 2234-2239.	1.1	60
153	Diagnostics and modeling of a macroscopic plasma display panel cell. Journal of Applied Physics, 2000, 88, 3905.	1.1	67
154	Preliminary results of the experimental and simulated intrinsic properties of the Compteur A Trou (CAT) detector: behavior with synchrotron radiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 426, 339-355.	0.7	11
155	Self-organized filaments in dielectric barrier glow discharges. IEEE Transactions on Plasma Science, 1999, 27, 20-21.	0.6	93
156	Spontaneous oscillations in a Hall thruster. IEEE Transactions on Plasma Science, 1999, 27, 98-99.	0.6	28
157	Simulations of self-organized filaments in a dielectric barrier glow discharge plasma. Journal of Applied Physics, 1999, 85, 7569-7572.	1.1	130
158	Addressing and sustaining in alternating current coplanar plasma display panels. Journal of Applied Physics, 1999, 86, 124-133.	1.1	98
159	Modelling non-thermal plasmas generated in glow discharges. Pure and Applied Chemistry, 1999, 71, 1837-1844.	0.9	6
160	Low frequency oscillations in a stationary plasma thruster. Journal of Applied Physics, 1998, 84, 3541-3554.	1.1	360
161	Two-dimensional simulation of an alternating current matrix plasma display cell: Cross-talk and other geometric effects. Journal of Applied Physics, 1998, 83, 1884-1897.	1.1	149
162	Electron transport in stationary plasma thrusters. Transport Theory and Statistical Physics, 1998, 27, 203-221.	0.4	18

#	Article	IF	CITATIONS
163	The breakdown and glow phases during the initiation of discharges for lamps. Journal of Applied Physics, 1997, 82, 112-119.	1.1	15
164	Modeling the effect of the cathode geometry in a DC glow discharge ion source for mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 531-536.	1.5	9
165	Fluid and Hybrid Models of Non Equilibrium Discharges. , 1997, , 291-319.		5
166	Calculated characteristics of an ac plasma display panel cell. IEEE Transactions on Plasma Science, 1996, 24, 95-96.	0.6	34
167	Global visualization of powder trapping in capacitive RF plasmas by two-dimensional laser scattering. IEEE Transactions on Plasma Science, 1996, 24, 101-102.	0.6	10
168	Simulating Large-Area Plasma Displays. Europhysics News, 1996, 27, 46-49.	0.1	9
169	Numerical model of an ac plasma display panel cell in neonâ€xenon mixtures. Journal of Applied Physics, 1995, 78, 731-745.	1.1	306
170	Field reversal in the negative glow of a DC glow discharge. Journal Physics D: Applied Physics, 1995, 28, 2083-2088.	1.3	59
171	Triggered breakdown in Iowâ€pressure hollow cathode (pseudospark) discharges. Journal of Applied Physics, 1995, 78, 77-89.	1.1	36
172	Two-dimensional model of a capacitively coupled rf discharge and comparisons with experiments in the Gaseous Electronics Conference reference reactor. Physical Review E, 1995, 51, 1376-1390.	0.8	261
173	Space and time dependence of the electric field and plasma induced emission in transient and steady-state hollow cathode discharges. Physical Review E, 1994, 50, 2239-2252.	0.8	20
174	Plasma particle interactions. Plasma Sources Science and Technology, 1994, 3, 407-417.	1.3	30
175	Two-dimensional, hybrid model of low-pressure glow discharges. Physical Review E, 1994, 49, 5607-5622.	0.8	196
176	Self consistent low pressure RF (radiant flux) discharge modelling: Comparisons with experiments in clean and dusty plasmas. Pure and Applied Chemistry, 1994, 66, 1363-1372.	0.9	2
177	Modelling of discharges and non-thermal plasmas—applications to plasma processing. Surface and Coatings Technology, 1993, 59, 32-40.	2.2	8
178	A self-consistent one-dimensional model for He nonequilibrium kinetics in RF discharges. Plasma Chemistry and Plasma Processing, 1993, 13, 499-519.	1.1	13
179	Cathode sheath formation in a dischargeâ€sustained XeCl laser. Journal of Applied Physics, 1993, 74, 1553-1567.	1.1	77
180	Power Deposition in Low Pressure, Capacitively Coupled RF Discharges. NATO ASI Series Series B: Physics, 1993, , 359-378.	0.2	0

#	Article	IF	CITATIONS
181	Transition from a capacitive to a resistive regime in a silane radio frequency discharge and its possible relation to powder formation. Journal of Applied Physics, 1992, 71, 4751-4754.	1.1	106
182	Characteristics of a dusty nonthermal plasma from a particle-in-cell Monte Carlo simulation. Physical Review A, 1992, 46, 7910-7922.	1.0	120
183	Analytical formulation of ionization source term for discharge models in argon, helium, nitrogen, and silane. Journal of Applied Physics, 1992, 72, 4533-4537.	1.1	24
184	Numerical and experimental diagnostics of rf discharges in pure and dusty argon. Physical Review A, 1992, 46, 7923-7933.	1.0	89
185	Pseudospark discharges via computer simulation. IEEE Transactions on Plasma Science, 1991, 19, 286-296.	0.6	215
186	Non-Equilibrium Effects in the Initiation of Pseudospark Discharges., 1991,, 109-120.		1
187	Fundamental Properties of RF Glow Discharges: An Approach Based on Selfâ€"Consistent Numerical Models. NATO ASI Series Series B: Physics, 1990, , 155-186.	0.2	18
188	Transition between different regimes of rf glow discharges. Physical Review A, 1990, 41, 4447-4459.	1.0	314
189	Self-Consistent Models of DC and Transient Glow Discharges. NATO ASI Series Series B: Physics, 1990, , 255-275.	0.2	4
190	Non-Equilibrium Electron Transport: A Brief Overview., 1990,, 1-9.		0
191	Modelling of the Electron and Ion Kinetics in Cylindrical Proportional Counters. Radiation Protection Dosimetry, 1990, 31, 107-118.	0.4	1
192	Transient current and sheath motion following the photoelectron-initiated avalanche in dc glow discharges. Physical Review A, 1989, 40, 5208-5219.	1.0	33
193	Radiofrequency Discharge Modeling. Materials Research Society Symposia Proceedings, 1989, 165, 17.	0.1	5
194	Microscopic Calculation of the Gas Gain in Cylindrical Proportional Counters. Radiation Protection Dosimetry, 1989, 29, 23-30.	0.4	3
195	A twoâ€dimensional model of dc glow discharges. Journal of Applied Physics, 1988, 63, 1342-1349.	1.1	160
196	Numerical model of rf glow discharges. Physical Review A, 1987, 36, 2782-2792.	1.0	335
197	Discharge Modeling. , 1987, , 369-384.		1
198	A MACROSCOPIC MODEL OF ELECTRON SWARM MOTION IN NON-EQUILIBRIUM REGIONS., 1987,, 34-39.		3

#	Article	IF	Citations
199	Energy balance in a nonequilibrium weakly ionized nitrogen discharge. Journal of Applied Physics, 1986, 60, 915-923.	1.1	71
200	Stochastic development of an electron avalanche. Physical Review A, 1986, 34, 440-449.	1.0	47
201	Monte Carlo simulation of electron swarm motion in SF6. Journal Physics D: Applied Physics, 1984, 17, 1133-1148.	1.3	26
202	A Monte Carlo analysis of an electron swarm in a nonuniform field: the cathode region of a glow discharge in helium. Journal Physics D: Applied Physics, 1982, 15, 2169-2187.	1.3	309
203	Theoretical and experimental study of pseudospark electron beam generation. , 0, , .		1
204	Two-dimensional Model Of Stationary Plasma Thruster. , 0, , .		1
205	Electron Beam Generation During The Hollow Cathode Phase Of Pseudospark Operation. , 0, , .		1
206	Plasmoid Formation And Expansion In A Microwave Field., 0, , .		0
207	Modeling the breakdown and glow phases during the ignition of HID lamps. , 0, , .		2
208	User-friendly Boltzmann code for electrons in weakly ionized gases. , 0, , .		4
209	Two-dimensional modeling of a glow discharge source for mass spectrometry., 0,,.		0
210	Understanding the conductivity in ion propulsion devices. , 0, , .		1
211	Parametric studies of AC plasma display panel cells in complex geometries. , 0, , .		0
212	Simulation of plasma sheath dynamics in vacuum circuit breakers. , 0, , .		11
213	Physics of a PDP discharge cell-improvement of luminance and luminous efficiency. , 0, , .		1
214	Numerical Modeling of an End-Hall Ion Source. Advanced Materials Research, 0, 227, 144-147.	0.3	2