
Stalin Joseph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7671019/publications.pdf Version: 2024-02-01

STALIN LOSEDH

#	Article	IF	CITATIONS
1	Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chemical Society Reviews, 2018, 47, 2680-2721.	38.1	737
2	Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catalysis Today, 2015, 243, 209-217.	4.4	93
3	Heteroatom functionalized activated porous biocarbons and their excellent performance forÂCO ₂ capture at high pressure. Journal of Materials Chemistry A, 2017, 5, 21196-21204.	10.3	91
4	Energy Efficient Synthesis of Ordered Mesoporous Carbon Nitrides with a High Nitrogen Content and Enhanced CO ₂ Capture Capacity. Chemistry - A European Journal, 2017, 23, 10753-10757.	3.3	85
5	Diaminotetrazine based mesoporous C ₃ N ₆ with a well-ordered 3D cubic structure and its excellent photocatalytic performance for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 18183-18192.	10.3	75
6	Ordered Mesoporous C ₇₀ with Highly Crystalline Pore Walls for Energy Applications. Advanced Functional Materials, 2018, 28, 1803701.	14.9	73
7	Highly Crystalline Mesoporous C ₆₀ with Ordered Pores: A Class of Nanomaterials for Energy Applications. Angewandte Chemie - International Edition, 2018, 57, 569-573.	13.8	71
8	Highly ordered mesoporous carbons with high specific surface area from carbonated soft drink for supercapacitor application. Microporous and Mesoporous Materials, 2019, 280, 337-346.	4.4	56
9	Highly ordered iron oxide-mesoporous fullerene nanocomposites for oxygen reduction reaction and supercapacitor applications. Microporous and Mesoporous Materials, 2019, 285, 21-31.	4.4	50
10	Recent Advances in Functionalized Nanoporous Carbons Derived from Waste Resources and Their Applications in Energy and Environment. Advanced Sustainable Systems, 2021, 5, .	5.3	49
11	Metal organic framework derived mesoporous carbon nitrides with a high specific surface area and chromium oxide nanoparticles for CO ₂ and hydrogen adsorption. Journal of Materials Chemistry A, 2017, 5, 21542-21549.	10.3	45
12	Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application. Microporous and Mesoporous Materials, 2013, 172, 77-86.	4.4	44
13	Enhanced Supercapacitor Performance of Nâ€Doped Mesoporous Carbons Prepared from a Gelatin Biomolecule. ChemPhysChem, 2013, 14, 1563-1569.	2.1	44
14	Mesoporous Cu-SBA-15 with highly ordered porous structure and its excellent CO2 adsorption capacity. Microporous and Mesoporous Materials, 2018, 267, 134-141.	4.4	40
15	Recent Advances in the Preparation and Applications of Organoâ€functionalized Porous Materials. Chemistry - an Asian Journal, 2020, 15, 2588-2621.	3.3	33
16	Carbon Nanoflakes and Nanotubes from Halloysite Nanoclays and their Superior Performance in CO ₂ Capture and Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 11922-11933.	8.0	32
17	Ordered Mesoporous Carbon Nitrides with Tuneable Nitrogen Contents and Basicity for Knoevenagel Condensation. ChemCatChem, 2021, 13, 468-474.	3.7	24
18	Highly Crystalline Mesoporous C ₆₀ with Ordered Pores: A Class of Nanomaterials for Energy Applications. Angewandte Chemie, 2018, 130, 578-582.	2.0	21

STALIN JOSEPH

#	Article	IF	CITATIONS
19	Cobalt oxide functionalized nanoporous carbon electrodes and their excellent supercapacitive performance. RSC Advances, 2015, 5, 13930-13940.	3.6	20
20	Effect of Heat Treatment on the Nitrogen Content and Its Role on the Carbon Dioxide Adsorption Capacity of Highly Ordered Mesoporous Carbon Nitride. Chemistry - an Asian Journal, 2017, 12, 595-604.	3.3	16
21	The isopropylation of naphthalene with propene over H-mordenite: The catalysis at the internal and external acid sites. Journal of Molecular Catalysis A, 2014, 395, 543-552.	4.8	15
22	Excellent supercapacitance performance of 3-D mesoporous carbon with large pores from FDU-12 prepared using a microwave method. RSC Advances, 2018, 8, 17017-17024.	3.6	15
23	Mesoporous Carbons with Hexagonally Ordered Pores Prepared from Carbonated Soft-Drink for CO ₂ Capture at High Pressure. Journal of Nanoscience and Nanotechnology, 2018, 18, 7830-7837.	0.9	10
24	Highly enhanced photocatalytic hydrogen evolution activity of graphitic carbon nitride with 3D connected mesoporous structure. Sustainable Materials and Technologies, 2020, 25, e00184.	3.3	10
25	Nanoporous TiCN with High Specific Surface Area for Enhanced Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 12077-12086.	5.0	9
26	Synthesis of Nitrogenâ€Rich Carbon Nitrideâ€Based Hybrids and a New Insight of Their Battery Behaviors. Batteries and Supercaps, 2022, 5, .	4.7	8
27	The isopropylation of biphenyl over transition metal substituted aluminophosphates: MAPO-5 (M: Co) Tj ETQq1 🕻	L 0,784314 4.8	4 rgBT /Overl
28	Lanthanide oxide modified H-Mordenites: Deactivation of external acid sites in the isopropylation of naphthalene. Microporous and Mesoporous Materials, 2016, 230, 217-226.	4.4	5
29	Substitutional isomerism of triisopropylnaphthalenes in the isopropylation of naphthalene. Assignment by gas chromatography and confirmation by DFT calculation. Research on Chemical Intermediates, 2022, 48, 869-884.	2.7	4
30	Mesoporous Gallosilicate with 3 D Architecture as a Robust Energyâ€Efficient Heterogeneous Catalyst for Diphenylmethane Production. ChemCatChem, 2013, 5, 1863-1870.	3.7	3
31	Alkaline Earth Metal Modified H-Mordenites. Their Catalytic Properties in the Isopropylation of Biphenyl. Industrial & Engineering Chemistry Research, 2015, 54, 12283-12292.	3.7	3
32	Fabrication of Mesoporous C ₆₀ /Carbon Hybrids with 3D Porous Structure for Energy Storage Applications. Journal of Nanoscience and Nanotechnology, 2021, 21, 1483-1492.	0.9	3