Jonathan A Karty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7670941/publications.pdf

Version: 2024-02-01

82 papers

2,985 citations

32 h-index 50 g-index

86 all docs 86 docs citations

86 times ranked 3762 citing authors

#	Article	lF	CITATIONS
1	Molecular bases of an alternative dual-enzyme system for light color acclimation of marine <i> Synechococcus < $i>$ cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .</i>	3.3	16
2	C–F Bond Activation in the Solid State: Functionalization of Carbon through Reactions of Graphite Fluoride with Amines. Journal of Physical Chemistry C, 2021, 125, 10326-10333.	1.5	6
3	Arsenic exposure induces a bimodal toxicity response in zebrafish. Environmental Pollution, 2021, 287, 117637.	3.7	16
4	MpeV is a lyase isomerase that ligates a doubly linked phycourobilin on the \hat{I}^2 -subunit of phycoerythrin I and II in marine Synechococcus. Journal of Biological Chemistry, 2021, 296, 100031.	1.6	9
5	Electrosynthesis of a Biaurone by Controlled Dimerization of Flavone: Mechanistic Insight and Large-Scale Application. Journal of Organic Chemistry, 2020, 85, 10658-10669.	1.7	3
6	Biogeochemical evidence from OGCP Core 2A sediments for environmental changes preceding deposition of Tuff IB and climatic transitions in Upper Bed I of the Olduvai Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 555, 109824.	1.0	8
7	CpeT is the phycoerythrobilin lyase for Cys- 165 on \hat{l}^2 -phycoerythrin from Fremyella diplosiphon and the chaperone-like protein CpeZ greatly improves its activity. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148284.	0.5	5
8	The oncometabolite L-2-hydroxyglutarate is a common product of dipteran larval development. Insect Biochemistry and Molecular Biology, 2020, 127, 103493.	1.2	7
9	CpeY is a phycoerythrobilin lyase for cysteine 82 of the phycoerythrin I α-subunit in marine Synechococcus. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148215.	0.5	5
10	Direct Electrochemical Reduction of Acetochlor at Carbon and Silver Cathodes in Dimethylformamide. Journal of the Electrochemical Society, 2020, 167, 155517.	1.3	7
11	Biogeochemical evidence for environmental changes of Pleistocene Lake Olduvai during the transitional sequence of OGCP core 2A that encompasses Tuff IB (~1.848 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 532, 109267.	1.0	10
12	Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during <i>Drosophila melanogaster</i> larval development. Development (Cambridge), 2019, 146, .	1.2	28
13	CpeF is the bilin lyase that ligates the doubly linked phycoerythrobilin on \hat{I}^2 -phycoerythrin in the cyanobacterium Fremyella diplosiphon. Journal of Biological Chemistry, 2019, 294, 3987-3999.	1.6	16
14	The roles of the chaperone-like protein CpeZ and the phycoerythrobilin lyase CpeY in phycoerythrin biogenesis. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 549-561.	0.5	9
15	Interplay between differentially expressed enzymes contributes to light color acclimation in marine <i>Synechococcus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6457-6462.	3.3	25
16	Multi-metal Restriction by Calprotectin Impacts De Novo Flavin Biosynthesis in Acinetobacter baumannii. Cell Chemical Biology, 2019, 26, 745-755.e7.	2.5	61
17	Characterization of a Glycyl Radical Enzyme Bacterial Microcompartment Pathway in <i>Rhodobacter capsulatus</i> . Journal of Bacteriology, 2019, 201, .	1.0	15
18	Phosphate–phosphate oligomerization drives higher order co-assemblies with stacks of cyanostar macrocycles. Chemical Science, 2018, 9, 2863-2872.	3.7	63

#	Article	IF	CITATIONS
19	<i>Escherichia coli</i> cultures maintain stable subpopulation structure during long-term evolution. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4642-E4650.	3.3	46
20	Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis. ACS Nano, 2018, 12, 942-953.	7.3	86
21	Phenyl Selenosulfides as Cathode Materials for Rechargeable Lithium Batteries. Advanced Functional Materials, 2018, 28, 1801791.	7.8	66
22	A Class of Organopolysulfides As Liquid Cathode Materials for High-Energy-Density Lithium Batteries. ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS APPLIED & ACS	4.0	68
23	<i>Drosophila</i> larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1353-1358.	3.3	64
24	Ion Pairing and Coâ€facial Stacking Drive Highâ€Fidelity Bisulfate Assembly with Cyanostar Macrocyclic Hosts. Chemistry - A European Journal, 2017, 23, 10652-10662.	1.7	56
25	Local collection, reaction and analysis with theta pipette emitters. Analyst, The, 2017, 142, 1512-1518.	1.7	15
26	Metabolomic Analysis Reveals That the <i>Drosophila melanogaster</i> Gene <i>lysine</i> Influences Diverse Aspects of Metabolism. Genetics, 2017, 207, 1255-1261.	1.2	5
27	Capillary electrophoresis–mass spectrometry for direct structural identification of serum N-glycans. Journal of Chromatography A, 2017, 1523, 127-139.	1.8	47
28	Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine <i>Synechococcus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6077-6082.	3.3	37
29	Direct Reduction of 1-Bromo-6-chlorohexane and 1-Chloro-6-iodohexane at Silver Cathodes in Dimethylformamide. Electrochimica Acta, 2016, 218, 311-317.	2.6	4
30	Anions Stabilize Each Other inside Macrocyclic Hosts. Angewandte Chemie, 2016, 128, 14263-14268.	1.6	25
31	Anions Stabilize Each Other inside Macrocyclic Hosts. Angewandte Chemie - International Edition, 2016, 55, 14057-14062.	7.2	115
32	Catalytic reduction of $4,4\hat{a}\in^2$ - $(2,2,2$ -trichloroethane- $1,1$ -diyl)bis(methoxybenzene) (methoxychlor) with nickel(I) salen electrogenerated at reticulated vitreous carbon cathodes. Journal of Electroanalytical Chemistry, 2016, 772, 66-72.	1.9	10
33	Two Distinct Cyclodipeptide Synthases from a Marine Actinomycete Catalyze Biosynthesis of the Same Diketopiperazine Natural Product. ACS Synthetic Biology, 2016, 5, 547-553.	1.9	38
34	Nanopipettes: probes for local sample analysis. Chemical Science, 2015, 6, 3334-3341.	3.7	50
35	Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis. Organic and Biomolecular Chemistry, 2015, 13, 7177-7192.	1.5	37
36	Accurate Mass MS/MS/MS Analysis of Siderophores Ferrioxamine B and E1 by Collision-Induced Dissociation Electrospray Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 1899-1902.	1.2	8

#	Article	IF	Citations
37	Chelation-induced diradical formation as an approach to modulation of the amyloid- \hat{l}^2 aggregation pathway. Chemical Science, 2015, 6, 1018-1026.	3.7	15
38	Vitamin <scp>B</scp> ₁₂ regulates photosystem gene expression via the <scp>CrtJ</scp> antirepressor <scp>AerR</scp> in <scp><i>R</i></scp> <i>hodobacter capsulatus</i> . Molecular Microbiology, 2014, 91, 649-664.	1.2	53
39	Mechanistic Understanding of a Silver Pyridylpyrrolide as a Catalyst for 3 + 2 Cyclization of a Nitrile with Diazo Ester. Organometallics, 2014, 33, 1544-1552.	1.1	13
40	Electrochemical reduction of (1R,2r,3S,4R,5r,6S)-hexachlorocyclohexane (Lindane) at silver cathodes in organic and aqueous–organic media. Journal of Electroanalytical Chemistry, 2013, 692, 66-71.	1.9	47
41	Catalytic reduction of 4,4′-(2,2,2-trichloroethane-1,1-diyl)bis(chlorobenzene) (DDT) with nickel(I) salen electrogenerated at vitreous carbon cathodes in dimethylformamide. Journal of Electroanalytical Chemistry, 2013, 706, 55-63.	1.9	17
42	Integrated Metabolomics Approach Facilitates Discovery of an Unpredicted Natural Product Suite from <i>Streptomyces coelicolor</i> M145. ACS Chemical Biology, 2013, 8, 2009-2016.	1.6	62
43	Redox and Light Control the Heme-Sensing Activity of AppA. MBio, 2013, 4, e00563-13.	1.8	21
44	Formation and Reactivity of the Terminal Vanadium Nitride Functionality. European Journal of Inorganic Chemistry, 2013, 2013, 3916-3929.	1.0	26
45	RegB Kinase Activity Is Repressed by Oxidative Formation of Cysteine Sulfenic Acid. Journal of Biological Chemistry, 2013, 288, 4755-4762.	1.6	43
46	Phycoerythrin-specific bilin lyase–isomerase controls blue-green chromatic acclimation in marine <> Synechococcus < /i> Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20136-20141.	3.3	64
47	IN A VARIABLE THERMAL ENVIRONMENT SELECTION FAVORS GREATER PLASTICITY OF CELL MEMBRANES IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2012, 66, 1976-1984.	1.1	60
48	Direct and nickel(I) salen-catalyzed reduction of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) in dimethylformamide. Journal of Electroanalytical Chemistry, 2012, 676, 6-12.	1.9	22
49	Activity of the tetrapyrrole regulator CrtJ is controlled by oxidation of a redox active cysteine located in the DNA binding domain. Molecular Microbiology, 2012, 85, 734-746.	1.2	31
50	Two levels of conformational pre-organization consolidate strong CH hydrogen bonds in chloride–triazolophane complexes. Chemical Communications, 2011, 47, 5979.	2.2	60
51	Nanoparticles by Decomposition of Long Chain Iron Carboxylates: From Spheres to Stars and Cubes. Langmuir, 2011, 27, 3044-3050.	1.6	72
52	Neuroprotective peptide ADNF-9 in fetal brain of C57BL/6 mice exposed prenatally to alcohol. Journal of Biomedical Science, 2011, 18, 77.	2.6	2
53	Profiling and quantification of <i>Drosophila melanogaster</i> lipids using liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 2959-2968.	0.7	37
54	Aromatic and Aliphatic CH Hydrogen Bonds Fight for Chloride while Competing Alongside Ion Pairing within Triazolophanes. Chemistry - A European Journal, 2011, 17, 312-321.	1.7	98

#	Article	IF	CITATIONS
55	Electrochemistry of substituted salen complexes of nickel(II): Nickel(I)-catalyzed reduction of alkyl and acetylenic halides. Journal of Electroanalytical Chemistry, 2010, 647, 194-203.	1.9	37
56	Ligand Influence on Metal Aggregation: a Unique Bonding Mode for Pyridylpyrrolides. Inorganic Chemistry, 2010, 49, 7626-7628.	1.9	18
57	Tellus in, Tellus out: The Chemistry of the Vanadium Bis(telluride) Functionality. Angewandte Chemie - International Edition, 2009, 48, 2394-2397.	7.2	28
58	A Transient Vanadium(III) Neopentylidene Complex. Redox Chemistry and Reactivity of the Vâ•€H ^{<i>t</i>} Bu Functionality. Organometallics, 2009, 28, 843-852.	1.1	52
59	Catalytic reduction of hexachlorobenzene and pentachlorobenzene by cobalt(I) salen electrogenerated at vitreous carbon cathodes in dimethylformamide. Journal of Electroanalytical Chemistry, 2008, 612, 22-28.	1.9	31
60	Dipole-Promoted and Size-Dependent Cooperativity between Pyridyl-Containing Triazolophanes and Halides Leads to Persistent Sandwich Complexes with Iodide. Journal of the American Chemical Society, 2008, 130, 17293-17295.	6.6	139
61	Catalytic Reduction of 4,4[sup \hat{E}^1]-(2,2,2-Trichloroethane-1,1-diyl)bis(chlorobenzene) with Cobalt(I) Salen Electrogenerated at Vitreous Carbon Cathodes in Dimethylformamide. Journal of the Electrochemical Society, 2007, 154, F1.	1.3	16
62	Electrosynthesis of 4-Methylcoumarin via Cobalt(I)-Catalyzed Reduction of 2-Acetylphenyl 2-Chloroacetate or 2-Acetylphenyl 2,2-Dichloroacetate. Journal of the Electrochemical Society, 2007, 154, F231.	1.3	13
63	Catalytic Reduction of 1,1,1-Trichloro-2,2,2-trifluoroethane (CFC-113a) by Cobalt(I) Salen Electrogenerated at Vitreous Carbon Cathodes in Dimethylformamide. Journal of the Electrochemical Society, 2007, 154, F65.	1.3	23
64	A Top-Down/Bottom-Up Study of the Ribosomal Proteins of Caulobacter crescentus. Journal of Proteome Research, 2007, 6, 337-347.	1.8	31
65	Two dimensional liquid phase separations of proteins using online fractionation and concentration between chromatographic dimensions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 847, 103-113.	1.2	23
66	Bacterial Strain Differentiation by Mass Spectrometry., 2006, , 181-201.		2
67	Alkyl Group Incorporation into Nickel Salen during Controlled-Potential Electrolyses in the Presence of Alkyl Halides. Journal of the Electrochemical Society, 2006, 153, E71.	1.3	25
68	Stoichiometric reduction of primary alkyl monohalides with electrogenerated nickel(I) salen: Formation of aldehydes. Journal of Electroanalytical Chemistry, 2005, 580, 300-312.	1.9	23
69	Deamidation as a Consequence of \hat{l}^2 -Elimination of Phosphopeptides. Analytical Chemistry, 2005, 77, 4673-4676.	3.2	29
70	Alkylation of [2,2′-([2,2′-bipyridine]-6,6′-diyl)bis[phenolato]-N,N′,O,O′]nickel(II) during catalytic red of 1-iodooctane. Journal of Electroanalytical Chemistry, 2004, 564, 123-132.	luction	17
71	Catalytic reduction of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) by cobalt(I) salen electrogenerated at vitreous carbon cathodes. Journal of Electroanalytical Chemistry, 2004, 568, 157-165.	1.9	33
72	Lesions in Phycoerythrin Chromophore Biosynthesis in Fremyella diplosiphon Reveal Coordinated Light Regulation of Apoprotein and Pigment Biosynthetic Enzyme Gene Expression. Plant Cell, 2003, 15, 2448-2463.	3.1	40

#	Article	lF	CITATIONS
73	Defining Absolute Confidence Limits in the Identification of Caulobacter Proteins by Peptide Mass Mapping. Journal of Proteome Research, 2002, 1, 325-335.	1.8	25
74	Artifacts and unassigned masses encountered in peptide mass mapping. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 782, 363-383.	1.2	67
75	Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Molecular Microbiology, 2002, 45, 1029-1041.	1.2	67
76	Catalytic reduction of ethyl chloroacetate by cobalt(I) salophen electrogenerated at vitreous carbon cathodes. Journal of Electroanalytical Chemistry, 2002, 531, 163-169.	1.9	21
77	Direct and cobalt(I) salen-catalyzed reduction of 2,6-bis(chloromethyl)pyridine at carbon cathodes in acetonitrile. Journal of Electroanalytical Chemistry, 2001, 516, 50-58.	1.9	22
78	Enhancing the intensities of lysine-terminated tryptic peptide ions in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2000, 14, 2147-2153.	0.7	108
79	Catalytic reduction of ethyl chloroacetate by cobalt(I) salen electrogenerated at vitreous carbon cathodes. Journal of Electroanalytical Chemistry, 2000, 481, 24-33.	1.9	60
80	Fluorination studies of the [commo-3,3 \hat{a} \in 2-Co(3,1,2-CoC2B9H11)2 \hat{a} '1] ion. Journal of Organometallic Chemistry, 2000, 614-615, 120-124.	0.8	15
81	Monitoring the Growth of a Bacteria Culture by MALDI-MS of Whole Cells. Analytical Chemistry, 1999, 71, 1990-1996.	3.2	159
82	Detection of the bacteriological sex factor in E.coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 1998, 12, 625-629.	0.7	28