List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7670721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Essential Medicinal Chemistry of Curcumin. Journal of Medicinal Chemistry, 2017, 60, 1620-1637.	2.9	1,291
2	Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. Journal of Natural Products, 2018, 81, 679-690.	1.5	719
3	Quantitative1H NMR: Development and Potential of a Method for Natural Products Analysis§. Journal of Natural Products, 2005, 68, 133-149.	1.5	442
4	Quantitative ¹ H NMR. Development and Potential of an Analytical Method: An Update. Journal of Natural Products, 2012, 75, 834-851.	1.5	296
5	Importance of Purity Evaluation and the Potential of Quantitative ¹ H NMR as a Purity Assay. Journal of Medicinal Chemistry, 2014, 57, 9220-9231.	2.9	289
6	Low-Oxygen-Recovery Assay for High-Throughput Screening of Compounds against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2007, 51, 1380-1385.	1.4	286
7	Universal quantitative NMR analysis of complex natural samples. Current Opinion in Biotechnology, 2014, 25, 51-59.	3.3	272
8	G.U.E.S.S.—A Generally Useful Estimate of Solvent Systems for CCC. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 2777-2806.	0.5	252
9	Countercurrent Separation of Natural Products: An Update. Journal of Natural Products, 2015, 78, 1765-1796.	1.5	241
10	Dentin biomodification: strategies, renewable resources and clinical applications. Dental Materials, 2014, 30, 62-76.	1.6	205
11	Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery?. Journal of Medicinal Chemistry, 2016, 59, 1671-1690.	2.9	195
12	Phytochemistry and biological properties of glabridin. Fìtoterapìâ, 2013, 90, 160-184.	1.1	190
13	Xanthohumol Isolated from Humulus lupulus Inhibits Menadione-Induced DNA Damage through Induction of Quinone Reductase. Chemical Research in Toxicology, 2005, 18, 1296-1305.	1.7	183
14	Countercurrent Separation of Natural Products. Journal of Natural Products, 2008, 71, 1489-1508.	1.5	180
15	Safety and efficacy of black cohosh and red clover for the management of vasomotor symptoms. Menopause, 2009, 16, 1156-1166.	0.8	159
16	The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo. Antimicrobial Agents and Chemotherapy, 2015, 59, 880-889.	1.4	148
17	qNMR ? a versatile concept for the validation of natural product reference compounds. Phytochemical Analysis, 2001, 12, 28-42.	1.2	134
18	Elutionâ^'Extrusion Countercurrent Chromatography:  Theory and Concepts in Metabolic Analysis. Analytical Chemistry, 2007, 79, 3371-3382.	3.2	134

#	Article	IF	CITATIONS
19	Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya. Phytochemistry, 2002, 60, 873-882.	1.4	127
20	Serotonergic Activity-Guided Phytochemical Investigation of the Roots of Angelica sinensis. Journal of Natural Products, 2006, 69, 536-541.	1.5	127
21	Rational development of solvent system families in counter-current chromatography. Journal of Chromatography A, 2007, 1151, 51-59.	1.8	127
22	Major Flavonoids fromArabidopsis thalianaLeavesâ€. Journal of Natural Products, 1999, 62, 1301-1303.	1.5	126
23	Metabolism of xanthohumol and isoxanthohumol, prenylated flavonoids from hops (Humulus) Tj ETQq1 1 0.784	814.cgBT /	Overlock 10
24	New perspectives on natural products in TB drug research. Life Sciences, 2005, 78, 485-494.	2.0	120
25	Estrogens and Congeners from Spent Hops (Humuluslupulus). Journal of Natural Products, 2004, 67, 2024-2032.	1.5	116
26	A Routine Experimental Protocol for qHNMR Illustrated with Taxol⊥. Journal of Natural Products, 2007, 70, 589-595.	1.5	116
27	Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro. Molecular Brain Research, 2005, 138, 191-197.	2.5	113
28	Cimicifuga species identification by high performance liquid chromatography–photodiode array/mass spectrometric/evaporative light scattering detection for quality control of black cohosh products. Journal of Chromatography A, 2006, 1112, 241-254.	1.8	113
29	Comparison of the in Vitro Estrogenic Activities of Compounds from Hops (Humulus lupulus) and Red Clover (Trifolium pratense). Journal of Agricultural and Food Chemistry, 2005, 53, 6246-6253.	2.4	112
30	Fukiic and Piscidic Acid Esters from the Rhizome ofCimicifuga racemosaand thein vitroEstrogenic Activity of Fukinolic Acid. Planta Medica, 1999, 65, 763-764.	0.7	107
31	Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins. Acta Biomaterialia, 2014, 10, 3288-3294.	4.1	103
32	Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS ONE, 2017, 12, e0182658.	1.1	102
33	Seasonal Variation of Red Clover (Trifolium pratenseL., Fabaceae) Isoflavones and Estrogenic Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 1277-1282.	2.4	100
34	Factors in Maintaining Indigenous Knowledge Among Ethnic Communities of Manus island. Economic Botany, 2005, 59, 356-365.	0.8	98
35	IDENTIFICATION OF HUMAN HEPATIC CYTOCHROME P450 ENZYMES INVOLVED IN THE METABOLISM OF 8-PRENYLNARINGENIN AND ISOXANTHOHUMOL FROM HOPS (HUMULUS LUPULUS L.). Drug Metabolism and Disposition, 2006, 34, 1152-1159.	1.7	96
36	The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports, 2019, 36, 35-107.	5.2	92

#	Article	IF	CITATIONS
37	The LOTUS initiative for open knowledge management in natural products research. ELife, 0, 11, .	2.8	90
38	Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Molecular Nutrition and Food Research, 2014, 58, 1962-1969.	1.5	89
39	The Chemical and Biologic Profile of a Red Clover (Trifolium pratense L.) Phase II Clinical Extract. Journal of Alternative and Complementary Medicine, 2006, 12, 133-139.	2.1	85
40	HiFSA Fingerprinting Applied to Isomers with Near-Identical NMR Spectra: The Silybin/Isosilybin Case. Journal of Organic Chemistry, 2013, 78, 2827-2839.	1.7	84
41	Complete ¹ H NMR spectral analysis of ten chemical markers of <i>Ginkgo biloba</i> . Magnetic Resonance in Chemistry, 2012, 50, 569-575.	1.1	81
42	Anti-Tuberculosis Constituents from the Stem Bark ofMicromelum hirsutum. Planta Medica, 2005, 71, 261-267.	0.7	80
43	In Vitro Serotonergic Activity of Black Cohosh and Identification of <i>N</i> _{ï‰} -Methylserotonin as a Potential Active Constituent. Journal of Agricultural and Food Chemistry, 2008, 56, 11718-11726.	2.4	79
44	The Essential Medicinal Chemistry of Cannabidiol (CBD). Journal of Medicinal Chemistry, 2020, 63, 12137-12155.	2.9	79
45	In vivo estrogenic comparisons of Trifolium pratense (red clover) Humulus lupulus (hops), and the pure compounds isoxanthohumol and 8-prenylnaringenin. Chemico-Biological Interactions, 2008, 176, 30-39.	1.7	78
46	Essential Parameters for Structural Analysis and Dereplication by ¹ H NMR Spectroscopy. Journal of Natural Products, 2014, 77, 1473-1487.	1.5	77
47	Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Science Advances, 2022, 8, .	4.7	77
48	Evaluation of Estrogenic Activity of Licorice Species in Comparison with Hops Used in Botanicals for Menopausal Symptoms. PLoS ONE, 2013, 8, e67947.	1.1	75
49	Screening Natural Products for Inhibitors of Quinone Reductase-2 Using Ultrafiltration LCâ^'MS. Analytical Chemistry, 2011, 83, 1048-1052.	3.2	70
50	The Tandem of Full Spin Analysis and qHNMR for the Quality Control of Botanicals Exemplified withGinkgo biloba. Journal of Natural Products, 2012, 75, 238-248.	1.5	70
51	Mass spectrometric dereplication of nitrogen-containing constituents of black cohosh (Cimicifuga) Tj ETQq1 I	l 0.784314 1.1	rgBT /Overloc
52	Rufomycin Targets ClpC1 Proteolysis in Mycobacterium tuberculosis and M. abscessus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	68
53	<i>Angelica sinensis</i> and Its Alkylphthalides Induce the Detoxification Enzyme NAD(P)H: Quinone Oxidoreductase 1 by Alkylating Keap1. Chemical Research in Toxicology, 2008, 21, 1939-1948.	1.7	65
54	Unbiased evaluation of bioactive secondary metabolites in complex matrices. Fìtoterapìâ, 2012, 83, 1218-1225.	1.1	65

#	Article	IF	CITATIONS
55	Mimicking the Hierarchical Functions of Dentin Collagen Cross-Links with Plant Derived Phenols and Phenolic Acids. Langmuir, 2014, 30, 14887-14893.	1.6	64
56	Solvent effects in the structure dereplication of caffeoyl quinic acids. Magnetic Resonance in Chemistry, 1999, 37, 827-836.	1.1	63
57	Analysis and Purification of Bioactive Natural Products: The AnaPurNa Study. Journal of Natural Products, 2012, 75, 1243-1255.	1.5	61
58	Stereochemical Analysis of Leubethanol, an Anti-TB-Active Serrulatane, fromLeucophyllum frutescens. Journal of Natural Products, 2011, 74, 1842-1850.	1.5	60
59	Phytoconstituents from Vitex agnus-castus fruits. Fìtoterapìâ, 2011, 82, 528-533.	1.1	60
60	The Multiple Biological Targets of Hops and Bioactive Compounds. Chemical Research in Toxicology, 2019, 32, 222-233.	1.7	60
61	Purityâ^ Activity Relationships of Natural Products: The Case of Anti-TB Active Ursolic Acid. Journal of Natural Products, 2008, 71, 1742-1748.	1.5	59
62	Counter-current chromatography based analysis of synergy in an anti-tuberculosis ethnobotanical. Journal of Chromatography A, 2007, 1151, 211-215.	1.8	56
63	Validation of a Generic Quantitative ¹ H NMR Method for Natural Products Analysis. Phytochemical Analysis, 2013, 24, 581-597.	1.2	56
64	Coumaroyl Iridoids and a Depside from Cranberry (Vaccinium macrocarpon). Journal of Natural Products, 2007, 70, 253-258.	1.5	55
65	Performance Characteristics of Countercurrent Separation in Analysis of Natural Products of Agricultural Significance. Journal of Agricultural and Food Chemistry, 2008, 56, 19-28.	2.4	54
66	Opioidergic mechanisms underlying the actions of Vitex agnus-castus L Biochemical Pharmacology, 2011, 81, 170-177.	2.0	53
67	Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. European Journal of Pharmaceutical Sciences, 2017, 109, 182-190.	1.9	53
68	Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virginiana, Tiquilia plicata, and Tiquilia canescens. Phytochemistry, 2005, 66, 1567-1580.	1.4	52
69	Inhibition of UropathogenicEscherichia coliby Cranberry Juice:Â A New Antiadherence Assay. Journal of Agricultural and Food Chemistry, 2005, 53, 8940-8947.	2.4	52
70	Cimipronidine, a Cyclic Guanidine Alkaloid from Cimicifuga racemosa. Journal of Natural Products, 2005, 68, 1266-1270.	1.5	50
71	Ethnopharmacological evaluation of the informant consensus model on anti-tuberculosis claims among the Manus. Journal of Ethnopharmacology, 2006, 106, 82-89.	2.0	50
72	Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. Molecular Nutrition and Food Research, 2007, 51, 872-879.	1.5	50

#	Article	IF	CITATIONS
73	Solubility study of phytochemical cross-linking agents on dentin stiffness. Journal of Dentistry, 2010, 38, 431-436.	1.7	50
74	Discovery and Characterization of the Tuberculosis Drug Lead Ecumicin. Organic Letters, 2014, 16, 6044-6047.	2.4	50
75	Strategies in anti-Mycobacterium tuberculosis drug discovery based on phenotypic screening. Journal of Antibiotics, 2019, 72, 719-728.	1.0	50
76	Sesquiterpenes from <i>Oplopanax horridus</i> . Journal of Natural Products, 2010, 73, 563-567.	1.5	49
77	Integrated analytical assets aid botanical authenticity and adulteration management. Fìtoterapìâ, 2018, 129, 401-414.	1.1	49
78	Higher Order and Substituent Chemical Shift Effects in the Proton NMR of Glycosides. Journal of Natural Products, 2000, 63, 834-838.	1.5	48
79	Dynamic Residual Complexity of the Isoliquiritigenin–Liquiritigenin Interconversion During Bioassay. Journal of Agricultural and Food Chemistry, 2013, 61, 2146-2157.	2.4	46
80	Orthogonal analytical methods for botanical standardization: Determination of green tea catechins by qNMR and LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2014, 93, 59-67.	1.4	46
81	Qualitative and quantitative evaluation of solvent systems for countercurrent separation. Journal of Chromatography A, 2015, 1377, 55-63.	1.8	45
82	Improving natural product research translation: From source to clinical trial. FASEB Journal, 2020, 34, 41-65.	0.2	45
83	Proton Fingerprints Portray Molecular Structures: Enhanced Description of the ¹ H NMR Spectra of Small Molecules. Journal of Organic Chemistry, 2013, 78, 9963-9968.	1.7	44
84	Subtle Chemical Shifts Explain the NMR Fingerprints of Oligomeric Proanthocyanidins with High Dentin Biomodification Potency. Journal of Organic Chemistry, 2015, 80, 7495-7507.	1.7	44
85	Countercurrent assisted quantitative recovery of metabolites from plant-associated natural deep eutectic solvents. Fìtoterapìâ, 2016, 112, 30-37.	1.1	44
86	Occurrence of Progesterone and Related Animal Steroids in Two Higher Plants [,] . Journal of Natural Products, 2010, 73, 338-345.	1.5	43
87	Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals. Journal of Natural Products, 2015, 78, 2007-2022.	1.5	43
88	Bioautography with TLC-MS/NMR for Rapid Discovery of Anti-tuberculosis Lead Compounds from Natural Sources. ACS Infectious Diseases, 2016, 2, 294-301.	1.8	43
89	Silymarin content in Silybum marianum populations growing in Egypt. Industrial Crops and Products, 2016, 83, 729-737.	2.5	43
90	A galloylated dimeric proanthocyanidin from grape seed exhibits dentin biomodification potential. FA¬toterapA¬A¢, 2015, 101, 169-178.	1.1	42

#	Article	IF	CITATIONS
91	Evolution of Quantitative Measures in NMR: Quantum Mechanical qHNMR Advances Chemical Standardization of a Red Clover (<i>Trifolium pratense</i>) Extract. Journal of Natural Products, 2017, 80, 634-647.	1.5	42
92	Solvent System Selection Strategies in Countercurrent Separation. Planta Medica, 2015, 81, 1582-1591.	0.7	41
93	Diarylheptanoids from <i>Dioscorea villosa</i> (Wild Yam). Journal of Natural Products, 2012, 75, 2168-2177.	1.5	40
94	Dereplication, Residual Complexity, and Rational Naming: The Case of the <i>Actaea</i> Triterpenes. Journal of Natural Products, 2012, 75, 432-443.	1.5	40
95	Hop (<i>Humulus lupulus</i> L.) Extract and 6-Prenylnaringenin Induce P450 1A1 Catalyzed Estrogen 2-Hydroxylation. Chemical Research in Toxicology, 2016, 29, 1142-1150.	1.7	40
96	High-Resolution Structure of ClpC1-Rufomycin and Ligand Binding Studies Provide a Framework to Design and Optimize Anti-Tuberculosis Leads. ACS Infectious Diseases, 2019, 5, 829-840.	1.8	40
97	Hops (<i>Humulus lupulus</i>) Inhibits Oxidative Estrogen Metabolism and Estrogen-Induced Malignant Transformation in Human Mammary Epithelial cells (MCF-10A). Cancer Prevention Research, 2012, 5, 73-81.	0.7	39
98	Development of an extraction method for mycobacterial metabolome analysis. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 196-200.	1.4	38
99	Reciprocal Symmetry Plots as a Representation of Countercurrent Chromatograms. Analytical Chemistry, 2007, 79, 2320-2324.	3.2	38
100	Antiâ€TB polyynes from the roots of <i>Angelica sinensis</i> . Phytotherapy Research, 2008, 22, 878-882.	2.8	38
101	Dynamic Nature of the Ligustilide Complex. Journal of Natural Products, 2008, 71, 1604-1611.	1.5	38
102	Chlorinated Coumarins from the Polypore Mushroom <i>Fomitopsis officinalis</i> and Their Activity against <i>Mycobacterium tuberculosis</i> . Journal of Natural Products, 2013, 76, 1916-1922.	1.5	38
103	Structure and Anti-TB Activity of Trachylobanes from the Liverwort <i>Jungermannia exsertifolia ssp. cordifolia</i> . Journal of Natural Products, 2010, 73, 656-663.	1.5	37
104	GUESSmix-guided optimization of elution–extrusion counter-current separations. Journal of Chromatography A, 2009, 1216, 4225-4231.	1.8	36
105	Guanidine Alkaloids and Pictetâ~'Spengler Adducts from Black Cohosh (<i>Cimicifuga racemosa</i>). Journal of Natural Products, 2009, 72, 433-437.	1.5	36
106	Trypanoside, anti-tuberculosis, leishmanicidal, and cytotoxic activities of tetrahydrobenzothienopyrimidines. Bioorganic and Medicinal Chemistry, 2010, 18, 2880-2886.	1.4	36
107	Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (<i><scp>H</scp>umulus lupulus</i>) in vitro and in vivo. Molecular Nutrition and Food Research, 2013, 57, 1055-1066.	1.5	36
108	Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving. Journal of Organic Chemistry, 2016, 81, 878-889.	1.7	36

#	Article	IF	CITATIONS
109	Inhibition of human cytochrome P450 enzymes by hops (Humulus lupulus) and hop prenylphenols. European Journal of Pharmaceutical Sciences, 2014, 53, 55-61.	1.9	35
110	Dissemination of original NMR data enhances reproducibility and integrity in chemical research. Natural Product Reports, 2016, 33, 1028-1033.	5.2	35
111	The antibiofilm activity of lingonberry flavonoids against oral pathogens is a case connected to residual complexity. FA¬toterapA¬A¢, 2014, 97, 78-86.	1.1	34
112	Pharmacognosy in the digital era: shifting to contextualized metabolomics. Current Opinion in Biotechnology, 2018, 54, 57-64.	3.3	34
113	Evidence to the role of interflavan linkages and galloylation of proanthocyanidins at sustaining long-term dentin biomodification. Dental Materials, 2019, 35, 328-334.	1.6	33
114	Absolute Configuration of Native Oligomeric Proanthocyanidins with Dentin Biomodification Potency. Journal of Organic Chemistry, 2017, 82, 1316-1329.	1.7	32
115	<i>In vitro</i> metabolic interactions between black cohosh (<i>Cimicifuga racemosa</i>) and tamoxifen via inhibition of cytochromes P450 2D6 and 3A4. Xenobiotica, 2011, 41, 1021-1030.	0.5	31
116	Quantification of a Botanical Negative Marker without an Identical Standard: Ginkgotoxin in <i>Ginkgo biloba</i> . Journal of Natural Products, 2014, 77, 611-617.	1.5	31
117	Phytochemistry of cimicifugic acids and associated bases in <i>Cimicifuga racemosa</i> root extracts. Phytochemical Analysis, 2009, 20, 120-133.	1.2	30
118	Induction of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) by Glycyrrhiza Species Used for Women's Health: Differential Effects of the Michael Acceptors Isoliquiritigenin and Licochalcone A. Chemical Research in Toxicology, 2015, 28, 2130-2141.	1.7	30
119	Curcumin May (Not) Defy Science. ACS Medicinal Chemistry Letters, 2017, 8, 467-470.	1.3	30
120	Advanced applications of counter-current chromatography in the isolation of anti-tuberculosis constituents from Dracaena angustifolia. Journal of Chromatography A, 2007, 1151, 169-174.	1.8	28
121	Integrated standardization concept for Angelica botanicals using quantitative NMR. Fìtoterapìâ, 2012, 83, 18-32.	1.1	28
122	Antimycobacterial Rufomycin Analogues from <i>Streptomyces atratus</i> Strain MJM3502. Journal of Natural Products, 2020, 83, 657-667.	1.5	28
123	Quantitative Purity–Activity Relationships of Natural Products: The Case of Anti-Tuberculosis Active Triterpenes from <i>Oplopanax horridus</i> . Journal of Natural Products, 2013, 76, 413-419.	1.5	27
124	Biological and chemical standardization of a hop (<i>Humulus lupulus</i>) botanical dietary supplement. Biomedical Chromatography, 2014, 28, 729-734.	0.8	27
125	2D NMR Barcoding and Differential Analysis of Complex Mixtures for Chemical Identification: The <i>Actaea</i> Triterpenes. Analytical Chemistry, 2014, 86, 3964-3972.	3.2	27
126	Dynamic Residual Complexity of Natural Products by qHNMR: Solution Stability of Desmethylxanthohumol. Planta Medica, 2009, 75, 757-762.	0.7	26

#	Article	IF	CITATIONS
127	Design of countercurrent separation of Ginkgo biloba terpene lactones by nuclear magnetic resonance. Journal of Chromatography A, 2012, 1242, 26-34.	1.8	26
128	The Generally Useful Estimate of Solvent Systems (GUESS) method enables the rapid purification of methylpyridoxine regioisomers by countercurrent chromatography. Journal of Chromatography A, 2015, 1426, 248-251.	1.8	26
129	Silybum marianum pericarp yields enhanced silymarin products. Fìtoterapìâ, 2016, 112, 136-143.	1.1	26
130	Centrifugal partition chromatography enables selective enrichment of trimeric and tetrameric proanthocyanidins for biomaterial development. Journal of Chromatography A, 2018, 1535, 55-62.	1.8	26
131	GABAergic phthalide dimers fromAngelica sinensis (Oliv.) Diels. Phytochemical Analysis, 2006, 17, 398-405.	1.2	25
132	Differential Effects of Glycyrrhiza Species on Genotoxic Estrogen Metabolism: Licochalcone A Downregulates P450 1B1, whereas Isoliquiritigenin Stimulates It. Chemical Research in Toxicology, 2015, 28, 1584-1594.	1.7	25
133	Sweet spot matching: A thin-layer chromatography-based countercurrent solvent system selection strategy. Journal of Chromatography A, 2017, 1504, 46-54.	1.8	25
134	Oligomeric proanthocyanidins released from dentin induce regenerative dental pulp cell response. Acta Biomaterialia, 2017, 55, 262-270.	4.1	25
135	Metabolism of the tomato saponin α-tomatine by Gibberella pulicaris. Phytochemistry, 1998, 48, 1321-1328.	1.4	24
136	DESIGNER Extracts as Tools to Balance Estrogenic and Chemopreventive Activities of Botanicals for Women's Health. Journal of Natural Products, 2017, 80, 2284-2294.	1.5	24
137	A standardized Humulus lupulus (L.) ethanol extract partially prevents ovariectomy-induced bone loss in the rat without induction of adverse effects in the uterus. Phytomedicine, 2017, 34, 50-58.	2.3	24
138	Residual Complexity Does Impact Organic Chemistry and Drug Discovery: The Case of Rufomyazine and Rufomycin. Journal of Organic Chemistry, 2018, 83, 6664-6672.	1.7	24
139	Evaluation of Clucoiberin Reference Material fromIberisamaraby Spectroscopic Fingerprinting. Journal of Natural Products, 2002, 65, 517-522.	1.5	23
140	The University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements Research for Women's Health: from plant to clinical use. American Journal of Clinical Nutrition, 2008, 87, 504S-508S.	2.2	23
141	New finding of an anti-TB compound in the genus Marsypopetalum (Annonaceae) from a traditional herbal remedy of Laos. Journal of Ethnopharmacology, 2014, 151, 903-911.	2.0	23
142	Red Clover Aryl Hydrocarbon Receptor (AhR) and Estrogen Receptor (ER) Agonists Enhance Genotoxic Estrogen Metabolism. Chemical Research in Toxicology, 2017, 30, 2084-2092.	1.7	23
143	SAR Study on Estrogen Receptor α/β Activity of (Iso)flavonoids: Importance of Prenylation, C-Ring (Un)Saturation, and Hydroxyl Substituents. Journal of Agricultural and Food Chemistry, 2020, 68, 10651-10663.	2.4	23
144	Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions. Acta Crystallographica Section D: Structural Biology, 2020, 76, 458-471.	1.1	23

#	Article	IF	CITATIONS
145	Quantitative NMR (qNMR) for pharmaceutical analysis: The pioneering work of George Hanna at the US FDA. Magnetic Resonance in Chemistry, 2021, 59, 7-15.	1.1	22
146	Speciesâ€specific Standardisation of Licorice by Metabolomic Profiling of Flavanones and Chalcones. Phytochemical Analysis, 2014, 25, 378-388.	1.2	21
147	The influence of natural deep eutectic solvents on bioactive natural products: studying interactions between a hydrogel model and Schisandra chinensis metabolites. Fìtoterapìâ, 2018, 127, 212-219.	1.1	21
148	An NMR method towards the routine chiral determination of natural products. Phytochemical Analysis, 2004, 15, 213-219.	1.2	20
149	Estrogen Receptor (ER) Subtype Selectivity Identifies 8-Prenylapigenin as an ERβ Agonist from <i>Clycyrrhiza inflata</i> and Highlights the Importance of Chemical and Biological Authentication. Journal of Natural Products, 2018, 81, 966-975.	1.5	20
150	Suadimins A–C, Unprecedented Dimeric Quinoline Alkaloids with Antimycobacterial Activity from <i>Melodinus suaveolens</i> . Organic Letters, 2019, 21, 7065-7068.	2.4	20
151	The Cardenolides of Speirantha convallarioides 1. Planta Medica, 1995, 61, 162-166.	0.7	19
152	Complete ¹ H NMR spectral fingerprint of huperzine A. Magnetic Resonance in Chemistry, 2007, 45, 878-882.	1.1	19
153	Orthogonal Analysis Underscores the Relevance of Primary and Secondary Metabolites in Licorice. Journal of Natural Products, 2014, 77, 1806-1816.	1.5	19
154	The 9th International Countercurrent Chromatography Conference held at Dominican University, Chicago, USA, August 1–3, 2016. Journal of Chromatography A, 2017, 1520, 1-8.	1.8	19
155	Separation of Natural Products by Countercurrent Chromatography. Methods in Molecular Biology, 2012, 864, 221-254.	0.4	18
156	Hytramycins V and I, Anti-Mycobacterium tuberculosisHexapeptides from aStreptomyces hygroscopicusStrain. Journal of Natural Products, 2013, 76, 2009-2018.	1.5	18
157	<i>K</i> -Targeted Metabolomic Analysis Extends Chemical Subtraction to DESIGNER Extracts: Selective Depletion of Extracts of Hops (<i>Humulus lupulus</i>). Journal of Natural Products, 2014, 77, 2595-2604.	1.5	18
158	Digital NMR Profiles as Building Blocks: Assembling ¹ H Fingerprints of Steviol Glycosides. Journal of Natural Products, 2015, 78, 658-665.	1.5	18
159	Quality Control of Therapeutic Peptides by ¹ H NMR HiFSA Sequencing. Journal of Organic Chemistry, 2019, 84, 3055-3073.	1.7	18
160	Comprehensive Spectroscopic Investigation of $\hat{I}\pm$ -Onocerin. Planta Medica, 2000, 66, 299-302.	0.7	17
161	An experimental implementation of chemical subtraction. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 692-698.	1.4	17
162	High-Content Screening and Mechanism-Based Evaluation of Estrogenic Botanical Extracts. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 283-293.	0.6	17

#	Article	IF	CITATIONS
163	Stereochemistry of a Second Riolozane and Other Diterpenoids from <i>Jatropha dioica</i> . Journal of Natural Products, 2017, 80, 2252-2262.	1.5	17
164	Dynamics of the isoflavone metabolome of traditional preparations of Trifolium pratense L Journal of Ethnopharmacology, 2019, 238, 111865.	2.0	17
165	Preparation of flavone di-C-glycoside isomers from Jian-Gu injection (Premna fulva Craib.) using recycling counter-current chromatography. Journal of Chromatography A, 2019, 1599, 180-186.	1.8	17
166	Alepposides, Cardenolide Oligoglycosides from Adonis aleppica. Journal of Natural Products, 1993, 56, 67-75.	1.5	16
167	Sulfates as novel steroid metabolites in higher plants. Phytochemistry, 1999, 52, 1075-1084.	1.4	16
168	¹ Hâ€NMR Fingerprinting of <i>Vaccinium vitisâ€idaea</i> Flavonol Glycosides. Phytochemical Analysis, 2013, 24, 476-483.	1.2	16
169	Airborne Antituberculosis Activity of <i>Eucalyptus citriodora</i> Essential Oil. Journal of Natural Products, 2014, 77, 603-610.	1.5	16
170	Selective Depletion and Enrichment of Constituents in "Curcumin―and Other <i>Curcuma longa</i> Preparations. Journal of Natural Products, 2019, 82, 621-630.	1.5	16
171	Cytotoxic Constituents from <i>Lobaria scrobiculata</i> and a Comparison of Two Bioassays for Their Evaluation. Journal of Natural Products, 2014, 77, 1069-1073.	1.5	15
172	Chemotaxonomic and biosynthetic relationships between flavonolignans produced by Silybum marianum populations. FA¬toterapA¬A¢, 2017, 119, 175-184.	1.1	15
173	Quantum mechanical NMR full spin analysis in pharmaceutical identity testing and quality control. Journal of Pharmaceutical and Biomedical Analysis, 2021, 192, 113601.	1.4	15
174	Isolation and Pharmacological Characterization of Six Opioidergic <i>Picralima nitida</i> Alkaloids. Journal of Natural Products, 2021, 84, 71-80.	1.5	15
175	Chiral key positions in Uzara steroids. Phytochemical Analysis, 2000, 11, 79-89.	1.2	14
176	Chlorination DiversifiesCimicifuga racemosaTriterpene Glycosides. Journal of Natural Products, 2007, 70, 1016-1023.	1.5	14
177	Holistic Analysis Enhances the Description of Metabolic Complexity in Dietary Natural Products. Advances in Nutrition, 2016, 7, 179-189.	2.9	14
178	Isolation and structural characterization of dihydrobenzofuran congeners of licochalcone A. F¬toterapìâ, 2017, 121, 6-15.	1.1	14
179	Proanthocyanidin Dimers and Trimers from <i>Vitis vinifera</i> Provide Diverse Structural Motifs for the Evaluation of Dentin Biomodification. Journal of Natural Products, 2019, 82, 2387-2399.	1.5	14
180	Preparation of DESIGNER extracts of red clover (Trifolium pratense L.) by centrifugal partition chromatography. Journal of Chromatography A, 2019, 1605, 360277.	1.8	14

#	Article	IF	CITATIONS
181	Tri- and Tetrameric Proanthocyanidins with Dentin Bioactivities from <i>Pinus massoniana</i> . Journal of Organic Chemistry, 2020, 85, 8462-8479.	1.7	14
182	Rare A-Type, Spiro-Type, and Highly Oligomeric Proanthocyanidins from <i>Pinus massoniana</i> . Organic Letters, 2020, 22, 5304-5308.	2.4	14
183	Accurate and Precise External Calibration Enhances the Versatility of Quantitative NMR (qNMR). Analytical Chemistry, 2021, 93, 2733-2741.	3.2	14
184	Comprehensive Spectroscopic Investigation of α-Onocerin. Planta Medica, 2000, 66, 299-302.	0.7	13
185	Extraâ€Column Volume in CCC. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 1799-1818.	0.5	13
186	Modification of the side chain of micromolide, an anti-tuberculosis natural product. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5311-5315.	1.0	13
187	Studying Mass Balance and the Stability of (<i>Z</i>)-Ligustilide from <i>Angelica sinensis</i> Helps to Bridge a Botanical Instability–Bioactivity Chasm. Journal of Natural Products, 2019, 82, 2400-2408.	1.5	13
188	Pharmacognosy of Black Cohosh: The Phytochemical and Biological Profile of a Major Botanical Dietary Supplement. Progress in the Chemistry of Organic Natural Products, 2014, 99, 1-68.	0.8	13
189	CCC Sample Cutting for Isolation of Prenylated Phenolics from Hops. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 1959-1969.	0.5	12
190	CCC in the Phytochemical Analysis of Antiâ€īuberculosis Ethnobotanicals. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 2017-2028.	0.5	12
191	Purification of berry flavonol glycosides by long-bed gel permeation chromatography. Journal of Chromatography A, 2012, 1244, 20-27.	1.8	12
192	Nitrogen-Containing Constituents of Black Cohosh: Chemistry, Structure Elucidation, and Biological Activities. , 2015, 45, 31-75.		12
193	Cycloartane Triterpenes from the Aerial Parts of <i> Actaea racemosa</i> . Journal of Natural Products, 2016, 79, 541-554.	1.5	12
194	Evidence for Chemopreventive and Resilience Activity of Licorice: <i>Glycyrrhiza Glabra</i> and G. <i>Inflata</i> Extracts Modulate Estrogen Metabolism in ACI Rats. Cancer Prevention Research, 2018, 11, 819-830.	0.7	12
195	The DESIGNER Approach Helps Decipher the Hypoglycemic Bioactive Principles of <i>Artemisia dracunculus</i> (Russian Tarragon). Journal of Natural Products, 2019, 82, 3321-3329.	1.5	12
196	Pharmacokinetic Interactions of a Hop Dietary Supplement with Drug Metabolism in Perimenopausal and Postmenopausal Women. Journal of Agricultural and Food Chemistry, 2020, 68, 5212-5220.	2.4	12
197	Evidence-Based Herbal Medicine: Challenges in Efficacy and Safety Assessments. Annals of Traditional Chinese Medicine, 2006, , 11-26.	0.1	11
198	Distinguishing Vaccinium Species by Chemical Fingerprinting Based on NMR Spectra, Validated with Spectra Collected in Different Laboratories. Planta Medica, 2014, 80, 732-739.	0.7	11

#	Article	IF	CITATIONS
199	Evaluation of estrogenic potency of a standardized hops extract on mammary gland biology and on MNU-induced mammary tumor growth in rats. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 234-241.	1.2	11
200	NMR reveals an undeclared constituent in custom synthetic peptides. Journal of Pharmaceutical and Biomedical Analysis, 2020, 178, 112915.	1.4	11
201	A dynamic mechanical method to assess bulk viscoelastic behavior of the dentin extracellular matrix. Dental Materials, 2020, 36, 1536-1543.	1.6	11
202	Quantum Mechanics-Based Structure Analysis of Cyclic Monoterpene Glycosides from <i>Rhodiola rosea</i> . Journal of Natural Products, 2020, 83, 1950-1959.	1.5	11
203	Unveiling structure–activity relationships of proanthocyanidins with dentin collagen. Dental Materials, 2021, 37, 1633-1644.	1.6	11
204	Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses Science Advances, 2022, , eabi6110.	4.7	11
205	Adoligoses, Oligosaccharides of Rare Sugars from Adonis aleppica. Journal of Natural Products, 1995, 58, 483-494.	1.5	10
206	Application of Soft Pulse 1D NMR: Sweroside from a Potential Native American Anti-TB Drug. Spectroscopy Letters, 1995, 28, 903-913.	0.5	10
207	Computerâ€assisted ¹ H NMR analysis of the antiâ€ŧuberculosis drug lead ecumicin. Magnetic Resonance in Chemistry, 2017, 55, 239-244.	1.1	10
208	Proanthocyanidin Block Arrays (PACBAR) for Comprehensive Capture and Delineation of Proanthocyanidin Structures. Journal of Agricultural and Food Chemistry, 2020, 68, 13541-13549.	2.4	10
209	Classification of Flavonoid Metabolomes via Data Mining and Quantification of Hydroxyl NMR Signals. Analytical Chemistry, 2020, 92, 4954-4962.	3.2	10
210	Rufomycins or llamycins: Naming Clarifications and Definitive Structural Assignments. Journal of Natural Products, 2021, 84, 2644-2663.	1.5	10
211	A novel indigoid anti-tuberculosis agent. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 268-270.	1.0	9
212	Structural Sequencing of Oligopeptides Aided by ¹ H Iterative Full-Spin Analysis. Journal of Natural Products, 2017, 80, 2630-2643.	1.5	9
213	Rapid determination of growth inhibition of Mycobacterium tuberculosis by GC–MS/MS quantitation of tuberculostearic acid. Tuberculosis, 2013, 93, 322-329.	0.8	8
214	Real-Time Volumetric Phase Monitoring: Advancing Chemical Analysis by Countercurrent Separation. Analytical Chemistry, 2015, 87, 7418-7425.	3.2	8
215	Selective Chlorophyll Removal Method to "Degreen―Botanical Extracts. Journal of Natural Products, 2020, 83, 1846-1858.	1.5	8
216	NMR-Based Quantum Mechanical Analysis Builds Trust and Orthogonality in Structural Analysis: The Case of a Bisdesmosidic Triglycoside as <i>Withania somnifera</i> Aerial Parts Marker. Journal of Natural Products, 2021, 84, 836-845.	1.5	8

Do Certain Flavonoid IMPS Have a Vital Function?. Frontiers in Nutrition, 2021, 8, 762753. Selective Preparation and High Dynamic-Range Analysis of Cannabinoids in "CBD Oil―and Other <i>Cannabis sativa</i> Preparations. Journal of Natural Products, 2022, 85, 634-646. In Vitro Activities of Enantiopure and Racemic 1′-Acetoxychavicol Acetate against Clinical Isolates of Mycobacterium tuberculosis. Scientia Pharmaceutica, 2017, 85, 32.	1.6 1.5 0.7	8
<i>Cannabis sativa</i> Preparations. Journal of Natural Products, 2022, 85, 634-646. In Vitro Activities of Enantiopure and Racemic 1â€ ² -Acetoxychavicol Acetate against Clinical Isolates of		8
In Vitro Activities of Enantiopure and Racemic 1′-Acetoxychavicol Acetate against Clinical Isolates of Mycobacterium tuberculosis. Scientia Pharmaceutica, 2017, 85, 32.	0.7	
		7
The qNMR Summit 5.0: Proceedings and Status of qNMRÂTechnology. Analytical Chemistry, 2021, 93, 12162-12169.	3.2	7
Pharmaceutical analysis by NMR can accommodate strict impurity thresholds: The case of choline. Journal of Pharmaceutical and Biomedical Analysis, 2022, 214, 114709.	1.4	7
Aleppotrioloside, an aliphatic alcohol glycoside from Adonis aleppica. Phytochemistry, 1992, 31, 2522-2524.	1.4	6
Tandem of Countercurrent Separation and qHNMR Enables Gravimetric Analyses: Absolute Quantitation of the <i>RhodiolaÂrosea</i> ÂMetabolome. Analytical Chemistry, 2021, 93, 11701-11709.	3.2	6
Synthesis of Cimiracemate B, A Phenylpropanoid found in Cimicifuga racemosa. Natural Product Research, 2005, 19, 287-290.	1.0	5
Binary concepts and standardization in counter-current separation technology. Journal of Chromatography A, 2009, 1216, 4237-4244.	1.8	5
Lipidated steroid saponins from Dioscorea villosa (wild yam). Fìtoterapìâ, 2013, 91, 113-124.	1.1	5
Formation of (2 <i>R</i>)- and (2 <i>S</i>)-8-Prenylnaringenin Glucuronides by Human UDP-Glucuronosyltransferases. Journal of Agricultural and Food Chemistry, 2019, 67, 11650-11656.	2.4	5
NMR based quantitation of cycloartane triterpenes in black cohosh extracts. Fìtoterapìâ, 2020, 141, 104467.	1.1	5
Differentiation of Actaea species by NMR metabolomics analysis. Fìtoterapìâ, 2020, 146, 104686.	1.1	5
No Clinically Relevant Pharmacokinetic Interactions of a Red Clover Dietary Supplement with Cytochrome P450 Enzymes in Women. Journal of Agricultural and Food Chemistry, 2020, 68, 13929-13939.	2.4	5
Targeting Trimeric and Tetrameric Proanthocyanidins of <i>Cinnamomum verum</i> Bark as Bioactives for Dental Therapies. Journal of Natural Products, 2020, 83, 3287-3297.	1.5	5
Effect of dentin biomodification delivered by experimental acidic and neutral primers on resin adhesion. Journal of Dentistry, 2020, 99, 103354.	1.7	5
Investigation of red clover (Trifolium pratense) isoflavonoid residual complexity by off-line CCS-qHNMR. Fìtoterapìâ, 2022, 156, 105016.	1.1	5
Countercurrent separation assisted identification of two mammalian steroid hormones in Vitex negundo. Journal of Chromatography A, 2018, 1553, 108-115.	1.8	4
	12162-12169. Control of the second seco	3.2 3.2 Pharmaceutical analysis by NMR can accommodate strict impurity thresholds: The case of choline. Journal of Pharmaceutical and Biomedical Analysis, 2022, 214, 114709. 1.4 Aleppotrioloside, an aliphatic alcohol glycoside from Adonis aleppica. Phytochemistry, 1992, 31, 2522-2524. 1.4 Tandem of Countercurrent Separation and gHNMR Enables Gravinetric Analyses: Absolute Quantitation of the cloRhodiolaAroseac(I) AMetabolome. Analytical Chemistry, 2021, 93, 11701-11709. 3.2 Synthesis of Cimiracemate B, A Phenylpropanoid found in Cimicifuga racemosa. Natural Product Research, 2005, 19, 287-290. 1.0 Binary concepts and standardization in counter current separation technology. Journal of Chromatography A, 2009, 1216, 4237-4244. 1.1 Lipidated steroid saponins from Dioscorea villosa (wild yam). FÅ-toterapÅ-Å¢, 2013, 91, 113-124. 1.1 Formation of (2 (c) R (l))- and (2 (c) S (l))-3.4-frenylnaringenin Clucuronides by Human UDP-Glucuronosyltransferases. Journal of Agricultural and Food Chemistry, 2019, 67, 11650-11656. 2.4 NMR based quantitation of cycloartane triterpenes in black cohosh extracts. FÅ-toterapÅ-Å¢, 2020, 141, 104467. 1.1 Differentiation of Actaea species by NMR metabolomics analysis. FÅ-toterapÅ-Å¢, 2020, 146, 104686. 1.1 No Clinically Relevant Pharmacokinetic Interactions of a Red Clover Dietary Supplement with Cytochrome P450 Enzymes in Women. Journal of Agricultural and Food Chemistry, 2020, 68, 1329-1339. 1.5 Targeting Trimeric and Tetrameric

#	Article	IF	CITATIONS
235	6-Prenylnaringenin from Hops Disrupts ERα-Mediated Downregulation of <i>CYP1A1</i> to Facilitate Estrogen Detoxification. Chemical Research in Toxicology, 2020, 33, 2793-2803.	1.7	4
236	α-Onocerin chloroform hemisolvate. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1476-1477.	0.4	3
237	Medullopressin: A New Pressor Activity from the Renal Medulla. Hypertension Research, 2005, 28, 827-836.	1.5	3
238	The Vasodepressor Function of the Kidney: Further Characterization of Medullipin and a Second Hormone Designated Angiolysin. Hypertension Research, 2006, 29, 533-544.	1.5	3
239	Prenylated Coumaric Acids from <i>Artemisia scoparia</i> Beneficially Modulate Adipogenesis. Journal of Natural Products, 2021, 84, 1078-1086.	1.5	3
240	Plain ¹ H nuclear magnetic resonance analysis streamlines the quality control of antiviral favipiravir and congeneric World Health Organization essential medicines. Magnetic Resonance in Chemistry, 2021, 59, 746-751.	1.1	3
241	Auto-hydrolysis of red clover as "green―approach to (iso)flavonoid enriched products. Fìtoterapìâ, 2021, 152, 104878.	1.1	3
242	Rufomycin Exhibits Dual Effects Against Mycobacterium abscessus Infection by Inducing Host Defense and Antimicrobial Activities. Frontiers in Microbiology, 2021, 12, 695024.	1.5	3
243	Botanical Integrity: Part 2: Traditional and Modern Analytical Approaches. HerbalGram, 2016, 109, 60-64.	0.0	3
244	Absolute configuration of naturally occurring glabridin. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 1212-1216.	0.4	2
245	Enhancing Natural Product Clinical Trials (P13-037-19). Current Developments in Nutrition, 2019, 3, nzz036.P13-037-19.	0.1	2
246	Linear regression analysis of silychristin A, silybin A and silybin B contents in Silybum marianum. Natural Product Research, 2020, 34, 305-310.	1.0	2
247	The Untargeted Capability of NMR Helps Recognizing Nefarious Adulteration in Natural Products. Journal of Natural Products, 2021, 84, 846-856.	1.5	2
248	Silica Gel-mediated Oxidation of Prenyl Motifs Generates Natural Product-Like Artifacts. Planta Medica, 2021, 87, 998-1007.	0.7	2
249	Paradoxical effects of galloyl motifs in the interactions of proanthocyanidins with collagenâ€rich dentin. Journal of Biomedical Materials Research - Part A, 2022, 110, 196-203.	2.1	2
250	Proanthocyanidin Tetramers and Pentamers from <i>Cinnamomum verum</i> Bark and Their Dentin Biomodification Bioactivities. Journal of Natural Products, 2022, 85, 391-404.	1.5	2
251	Prognoses of malignancy in cases of pheochromocytomas?. Urology, 2000, 56, 891.	0.5	1
252	Editorial. Fìtoterapìâ, 2011, 82, 1-4.	1.1	1

#	Article	IF	CITATIONS
253	Oligomeric proanthocyanidins inhibit endogenous enzymatic activity of deciduous carious dentin. Pediatric Dental Journal, 2021, 31, 73-79.	0.3	1
254	Botanical Integrity: The Importance of the Integration of Chemical, Biological, and Botanical Analyses, and the Role of DNA Barcoding. HerbalGram, 2015, 106, 58-60.	0.0	1
255	Calloylated proanthocyanidins in dentin matrix exhibit biocompatibility and induce differentiation in dental stem cells. Journal of Bioactive and Compatible Polymers, 2022, 37, 220-230.	0.8	1