Reza Taghiabadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/767047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Cooling Rate on Microstructure and Mechanical Properties of AA5056 Al-Mg Alloy. International Journal of Metalcasting, 2022, 16, 1533-1543.	1.5	5
2	Study on the modification effect of copper on Al–15Mg2Si composite. Materials Chemistry and Physics, 2022, 276, 125323.	2.0	6
3	Optimizing the mechanical properties of Al-4.5Cu-xSi alloys through multi-pass friction stir processing and post-process aging. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	1.9	3
4	Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1249-1260.	2.4	7
5	Enhancing the Mechanical Properties of Si Particle Reinforced ZA22 Composite by Ti–B Modification. International Journal of Metalcasting, 2021, 15, 206-215.	1.5	12
6	Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 718-728.	2.4	23
7	Quality Index Assessment of Multi-Pass Friction Stir Processed Al–Si–Mg Alloys Fully Produced by Recycling of Machining Chips. Transactions of the Indian Institute of Metals, 2021, 74, 273-284.	0.7	2
8	Mechanical properties enhancement of Mg–4Si in-situ composites by friction stir processing. Materials Science and Technology, 2021, 37, 66-77.	0.8	15
9	Effect of equal channel angular pressing on microstructure and mechanical properties of thermally-homogenized Al–Mg2Si composites. Materials Chemistry and Physics, 2021, 259, 124200.	2.0	5
10	Tribological properties improvement of conventionally-cast Al-8.5Fe-1.3V-1.7Si alloy by multi-pass friction stir processing. Transactions of Nonferrous Metals Society of China, 2021, 31, 1262-1275.	1.7	10
11	Tribological Properties of Surface Friction Hardened AISI 316L Steel. Transactions of the Indian Institute of Metals, 2021, 74, 1979-1989.	0.7	2
12	Effect of multi-pass multi-directional forging on tribological properties of Si-rich eutectoid ZA alloys. Transactions of Nonferrous Metals Society of China, 2021, 31, 2024-2038.	1.7	6
13	Effect of Oxide Bifilms on the Fracture Behavior of AM60B Mg Alloy. Transactions of the Indian Institute of Metals, 2020, 73, 275-283.	0.7	5
14	Increasing the recycling percent in liquid-state recycling of Al machining chips by friction stir processing. Materials Chemistry and Physics, 2020, 243, 122627.	2.0	5
15	Microstructural evolution and mechanical properties of multi-directionally forged SiP/ZA22 composite. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	1.9	2
16	Mechanical properties enhancement of cast Al-8.5Fe-1.3V-1.7Si (FVS0812) alloy by friction stir processing. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	1.9	6
17	Effect of cell imprinting on viability and drug susceptibility of breast cancer cells to doxorubicin. Acta Biomaterialia, 2020, 113, 119-129.	4.1	13
18	Tribology of Si-rich TIG-deposited coatings on Zn–40Al–2Cu alloy. Surface Engineering, 2020, 36, 735-744.	1.1	5

Reza Taghiabadi

#	Article	IF	CITATIONS
19	Investigating the combination effect of warm extrusion and multi-directional forging on microstructure and mechanical properties of Al–Mg2Si composites. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	1.9	11
20	Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing. Materials Chemistry and Physics, 2020, 250, 123066.	2.0	60
21	Tribological behavior of friction stir processed SiP/ZA40 in-situ composites. Transactions of Nonferrous Metals Society of China, 2020, 30, 3043-3057.	1.7	2
22	Effect of Ca additions on evolved microstructures and subsequent mechanical properties of a cast and hot-extruded Mg–Zn–Zr magnesium alloy. International Journal of Advanced Manufacturing Technology, 2019, 104, 4265-4275.	1.5	16
23	Effect of multi-pass friction stir processing on microstructure and mechanical properties of cast Al-7Fe-5Ni alloy. Materials Research Express, 2019, 6, 106571.	0.8	13
24	Improving mechanical properties of Mn-added hypoeutectic Al-4Ni alloy by friction stir processing. Transactions of Nonferrous Metals Society of China, 2019, 29, 460-472.	1.7	6
25	The Correlation of Microstructure and Mechanical Properties of In-Situ Al-Mg2Si Cast Composite Processed by Equal Channel Angular Pressing. Materials, 2019, 12, 1553.	1.3	9
26	Statistical Strength Analysis of Dissimilar AA2024-T6 and AA6061-T6 Friction Stir Welded Joints. Journal of Materials Engineering and Performance, 2019, 28, 1822-1832.	1.2	5
27	Effect of Tool Pin Profile on the Microstructure and Tribological Properties of Friction Stir Processed Al-20 wt% Mg2Si Composite. Journal of Tribology, 2019, 141, .	1.0	25
28	Improving the Tribological Properties of Al-7Fe-5Ni Alloys via Friction Stir Processing. Journal of Tribology, 2019, 141, .	1.0	6
29	Effect of Be Modification on the Oxide Bifilms and Tensile Strength Reliability of Al-Si-Mg Alloys Containing Excess Fe. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 1236-1245.	1.0	9
30	Effect of friction hardening on the surface mechanical properties and tribological behavior of biocompatible Ti-6Al-4V alloy. Journal of Manufacturing Processes, 2018, 31, 776-786.	2.8	14
31	Quality index and hot tearing susceptibility of Al–7Si–0.35Mg– x Cu alloys. Transactions of Nonferrous Metals Society of China, 2018, 28, 1275-1286.	1.7	25
32	Effect of Fe-impurity on tribological properties of Al-15Mg 2 Si composite. Transactions of Nonferrous Metals Society of China, 2018, 28, 1084-1093.	1.7	10
33	Microstructure, Texture, Electrical and Mechanical Properties of AA-6063 Processed by Multi Directional Forging. Materials, 2018, 11, 2419.	1.3	19
34	Effect of Partial Substitution of Mn for Ni on Mechanical Properties of Friction Stir Processed Hypoeutectic Al-Ni Alloys. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 3007-3018.	1.0	9
35	Investigation of the Tribological Properties of AlxSi-1.2Fe(Mn) (x = 5-13Âwt.%) Alloys. Journal of Materials Engineering and Performance, 2018, 27, 3323-3334.	1.2	11
36	Weibull analysis of effect of T6 heat treatment on fracture strength of AM60B magnesium alloy. Transactions of Nonferrous Metals Society of China, 2018, 28, 20-29.	1.7	9

Reza Taghiabadi

#	Article	lF	CITATION
37	Effect of Mn Modification on the Tribological Properties of In Situ Al-15Mg2Si Composites Containing Fe as an Impurity. Journal of Tribology, 2018, 140, .	1.0	11
38	Effect of Bifilm Oxides on the Dry Sliding Wear Behavior of Fe-Rich Al–Si Alloys. Journal of Tribology, 2017, 139, .	1.0	11
39	Investigation on beneficial effects of beryllium on entrained oxide films, mechanical properties and casting reliability of Fe-rich Al–Si cast alloy. Materials Science and Technology, 2015, 31, 506-512.	0.8	4
40	Dry sliding wear behaviour of hypoeutectic Al–Si alloys containing excess iron. Materials Science and Technology, 2009, 25, 1017-1022.	0.8	11
41	Effect of iron-intermetallics on the fluidity of 413 aluminum alloy. Journal of Alloys and Compounds, 2009, 468, 539-545.	2.8	59
42	Effect of iron-rich intermetallics on the sliding wear behavior of Al–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 490, 162-170.	2.6	58
43	Effect of casting techniques on tensile properties of cast aluminium alloy (Al–Si–Mg) and TiB2containing metal matrix composite. Materials Science and Technology, 2003, 19, 497-502.	0.8	17