
Martin Ondrejka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7670308/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: Composition and substitutions in the (REE,Y)XO4 system (X =) Tj ETQq1	110478431	. &œ BT /O∨
2	Meta-igneous rocks of the West-Carpathian basement, Slovakia: indicators of Early Paleozoic extension and shortening events. Bulletin - Societie Geologique De France, 2009, 180, 461-471.	2.2	50
3	METAMORPHIC-HYDROTHERMAL REE MINERALS IN THE BACUCH MAGNETITE DEPOSIT, WESTERN CARPATHIANS, SLOVAKIA: (Sr,S)-RICH MONAZITE-(Ce) AND Nd-DOMINANT HINGGANITE. Canadian Mineralogist, 2010, 48, 81-94.	1.0	39
4	Magmatic and post-magmatic Y-REE-Th phosphate, silicate and Nb-Ta-Y-REE oxide minerals in A-type metagranite: an example from the TurÄok massif, the Western Carpathians, Slovakia. Mineralogical Magazine, 2009, 73, 1009-1025.	1.4	35
5	Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: An example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos, 2012, 142-143, 245-255.	1.4	34
6	Britholite, monazite, REE carbonates, and calcite: Products of hydrothermal alteration of allanite and apatite in A-type granite from Stupné, Western Carpathians, Slovakia. Lithos, 2015, 236-237, 212-225.	1.4	32
7	SHRIMP U-Th-Pb zircon dating of the granitoid massifs in the Malé Karpaty Mountains (Western) Tj ETQq1 1 0.7 Carpathica, 2009, 60, 345-350.	784314 rg 0.7	BT /Overloc 28
8	MINERALOGICAL RESPONSES TO SUBSOLIDUS ALTERATION OF GRANITIC ROCKS BY OXIDIZING As-BEARING FLUIDS: REE ARSENATES AND As-RICH SILICATES FROM THE ZINNWALD GRANITE, EASTERN ERZGEBIRGE, GERMANY. Canadian Mineralogist, 2011, 49, 913-930.	1.0	16
9	THE CRYSTAL CHEMISTRY OF GADOLINITE-DATOLITE GROUP SILICATES. Canadian Mineralogist, 2014, 52, 625-642.	1.0	16
10	Fluid-driven destabilization of REE-bearing accessory minerals in the granitic orthogneisses of North Veporic basement (Western Carpathians, Slovakia). Mineralogy and Petrology, 2016, 110, 561-580.	1.1	13
11	Origin and Age Determination of the Neotethys Meliata Basin Ophiolite Fragments in the Late Jurassic–Early Cretaceous Accretionary Wedge Mélange (Inner Western Carpathians, Slovakia). Minerals (Basel, Switzerland), 2019, 9, 652.	2.0	12
12	Minerals of the rhabdophane group and the alunite supergroup in microgranite: products of low-temperature alteration in a highly acidic environment from the Velence Hills, Hungary. Mineralogical Magazine, 2018, 82, 1277-1300.	1.4	11
13	Permian A-type rhyolites of the MuráÅ^ Nappe, Inner Western Carpathians, Slovakia: in-situ zircon U–Pb SIMS ages and tectonic setting. Geologica Carpathica, 2018, 69, 187-198.	0.7	10
14	Permian A-type granites of the Western Carpathians and Transdanubian regions: products of the Pangea supercontinent breakup. International Journal of Earth Sciences, 2021, 110, 2133-2155.	1.8	9
15	Quartz-apatite-REE phosphates-uraninite vein mineralization near ÄŒuÄma (eastern Slovakia): a product of early Alpine hydrothermal activity in the Gemeric Superunit, Western Carpathians. Journal of Geosciences (Czech Republic), 2014, , 209-222.	0.6	8
16	Mineral chemistry and monazite chemical Th–U–total Pb dating of the Wadi Muweilha muscovite pegmatite, Central Eastern Desert of Egypt: constraints on its origin and geodynamic evolution relative to the Arabian Nubian Shield. International Journal of Earth Sciences, 2022, 111, 823-860.	1.8	5
17	Hellandite-(Y)–hingganite-(Y)–fluorapatite retrograde coronae: a novel type of fluid-induced dissolution–reprecipitation breakdown of xenotime-(Y) in the metagranites of Fabova Hoľa, Western Carpathians, Slovakia. Mineralogical Magazine, 2022, 86, 586-605.	1.4	5
18	Permian A-type rhyolites of the Drienok Nappe, Inner Western Carpathians, Slovakia: Tectonic setting from in-situ zircon U–Pb LA–ICP–MS dating. Geologica Carpathica, 2022, 73, .	0.7	4

#	Article	IF	CITATIONS
19	Carbonate-bearing phosphohedyphane–"Hydroxylphosphohedyphane―and cerussite: Supergene products of galena alteration in Permian aplite (Western Carpathians, Slovakia). Canadian Mineralogist, 2020, 58, 347-365.	1.0	3
20	Titanite composition and SHRIMP U–Pb dating as indicators of post-magmatic tectono-thermal activity: Variscan I-type tonalites to granodiorites, the Western Carpathians. Geologica Carpathica, 2019, 70, 449-470.	0.7	3
21	Minerals of the rhabdophane group and the alunite supergroup in microgranite: products of low-temperature alteration in a highly acidic environment from the Velence Hills, Hungary – ERRATUM. Mineralogical Magazine, 2019, 83, 321.	1.4	0
22	Uranium-rich monazite-(Ce) from the Krivá type granitic boulders in conglomerates of the Pieniny Klippen Belt, Western Carpathians, Slovakia: composition, age determination and possible source areas. Geological Quarterly, 2013, 57, .	0.2	0