
Jizhong Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7670073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	iPS-derived neural stem cells for disease modeling and evaluation of therapeutics for mucopolysaccharidosis type II. Experimental Cell Research, 2022, 412, 113007.	1.2	5
2	Assessment of mitophagy in human iPSC-derived cardiomyocytes. Autophagy, 2022, 18, 2481-2494.	4.3	3
3	Sympathetic Neurons Regulate Cardiomyocyte Maturation in Culture. Frontiers in Cell and Developmental Biology, 2022, 10, 850645.	1.8	12
4	Generation of an induced pluripotent stem cell line (TRNDi030-A) from a patient with Farber disease carrying a homozygous p. Y36C (c. 107 A>G) mutation in ASAH1. Stem Cell Research, 2021, 53, 102387.	0.3	2
5	Generation of Alagille syndrome derived induced pluripotent stem cell line carrying heterozygous mutation in the JAGGED-1 gene at splicing site (Chr20: 10,629,709C>A) before exon 11. Stem Cell Research, 2021, 53, 102366.	0.3	2
6	Generation of an induced pluripotent stem cell line (TRNDi012-B) from Fibrodysplasia Ossificans Progressiva (FOP) patient carrying a heterozygous mutation c. 617GÂ>ÂA in the ACVR1 gene. Stem Cell Research, 2021, 54, 102424.	0.3	0
7	An induced pluripotent stem cell line (NCATS-CL9075) from a patient carrying compound heterozygote mutations, p.R390P and p.L318P, in the NGLY1 gene. Stem Cell Research, 2021, 54, 102400.	0.3	0
8	Generation of two gene corrected human isogenic iPSC lines (NCATS-CL6104 and NCATS-CL6105) from a patient line (NCATS-CL6103) carrying a homozygous p.R401X mutation in the NGLY1 gene using CRISPR/Cas9. Stem Cell Research, 2021, 56, 102554.	0.3	1
9	Modeling CNS Involvement in Pompe Disease Using Neural Stem Cells Generated from Patient-Derived Induced Pluripotent Stem Cells. Cells, 2021, 10, 8.	1.8	13
10	Generation of two tdTomato reporter induced pluripotent stem cell lines (NHLBIi003-A-1 and) Tj ETQq0 0 0 rgBT	[Oyerlock	τ 10 Tf 50 382
11	Four induced pluripotent stem cell lines (TRNDi021-C, TRNDi023-D, TRNDi024-D and TRNDi025-A) generated from fibroblasts of four healthy individuals. Stem Cell Research, 2020, 49, 102011.	0.3	2
12	CRISPR/Cas9-mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Translational Medicine, 2020, 9, 1203-1217.	1.6	10
13	Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells in Fully Chemically Defined Conditions. STAR Protocols, 2020, 1, 100015.	0.5	15
14	Biallelic correction of sickle cell diseaseâ€derived induced pluripotent stem cells (iPSCs) confirmed at the protein level through serumâ€free iPSâ€sac/erythroid differentiation. Stem Cells Translational Medicine, 2020, 9, 590-602.	1.6	17
15	An induced pluripotent stem cell line (TRNDi001-D) from a Niemann-Pick disease type C1 (NPC1) patient carrying a homozygous p. I1061T (c. 3182T>C) mutation in the NPC1 gene. Stem Cell Research, 2020, 44, 101737.	0.3	4
16	Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Reports, 2020, 30, 932-946.e7.	2.9	57
17	Generation of human induced pluripotent stem cells (NIHTVBi004-A, NIHTVBi005-A, NIHTVBi006-A,) Tj ETQq1 1	0.784314	rgBT /Overlo

An induced pluripotent stem cell line (TRNDi010-C) from a patient carrying a homozygous p.R401X mutation in the NGLY1 gene. Stem Cell Research, 2019, 39, 101496.

0.3 2

JIZHONG ZOU

#	Article	IF	CITATIONS
19	Robust generation of erythroid and multilineage hematopoietic progenitors from human iPSCs using a scalable monolayer culture system. Stem Cell Research, 2019, 41, 101600.	0.3	23
20	Generation of two induced pluripotent stem cell lines (NHLBIi001-A and NHLBIi001-B) from a healthy Caucasian female volunteer with normal cardiac function. Stem Cell Research, 2019, 41, 101627.	0.3	1
21	p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19626-19634.	3.3	55
22	An induced pluripotent stem cell line (TRNDi009-C) from a Niemann-Pick disease type A patient carrying a heterozygous p.L302P (c.905 T>C) mutation in the SMPD1 gene. Stem Cell Research, 2019, 38, 101461.	0.3	10
23	Generation of an induced pluripotent stem cell line (TRNDi008-A) from a Hunter syndrome patient carrying a hemizygous 208insC mutation in the IDS gene. Stem Cell Research, 2019, 37, 101451.	0.3	5
24	Generation of an induced pluripotent stem cell line (TRNDi004-I) from a Niemann-Pick disease type B patient carrying a heterozygous mutation of p.L43_A44delLA in the SMPD1 gene. Stem Cell Research, 2019, 37, 101436.	0.3	3
25	A human induced pluripotent stem cell line (TRNDi007-B) from an infantile onset Pompe patient carrying p.R854X mutation in the GAA gene. Stem Cell Research, 2019, 37, 101435.	0.3	9
26	An induced pluripotent stem cell line (TRNDi006-A) from a MPS IIIB patient carrying homozygous mutation of p.Glu153Lys in the NAGLU gene. Stem Cell Research, 2019, 37, 101427.	0.3	4
27	Generation of an induced pluripotent stem cell line (TRNDi005-A) from a Mucopolysaccharidosis Type IVA (MPS IVA) patient carrying compound heterozygous p.R61W and p.WT405del mutations in the GALNS gene. Stem Cell Research, 2019, 36, 101408.	0.3	5
28	Generation of an induced pluripotent stem cell line (TRNDi003-A) from a Noonan syndrome with multiple lentigines (NSML) patient carrying a p.Q510P mutation in the PTPN11 gene. Stem Cell Research, 2019, 34, 101374.	0.3	10
29	Generation of an induced pluripotent stem cell line (TRNDi002-B) from a patient carrying compound heterozygous p.Q208X and p.G310G mutations in the NGLY1 gene. Stem Cell Research, 2019, 34, 101362.	0.3	7
30	The ribosomal prolyl-hydroxylase OGFOD1 decreases during cardiac differentiation and modulates translation and splicing. JCI Insight, 2019, 4, .	2.3	10
31	Eltrombopag Improves Erythroid Differentiation in a Human iPSC Model of Diamond Blackfan Anemia. Blood, 2019, 134, 1214-1214.	0.6	4
32	INDUCED PLURIPOTENT STEM CELLS AND GENE TARGETING FOR REGENERATIVE MEDICINE. , 2019, , 549-562.		0
33	Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs. Scientific Reports, 2018, 8, 5907.	1.6	21
34	Neural stem cells for disease modeling and evaluation of therapeutics for Tay-Sachs disease. Orphanet Journal of Rare Diseases, 2018, 13, 152.	1.2	34
35	GATA2 deficiency and human hematopoietic development modeled using induced pluripotent stem cells. Blood Advances, 2018, 2, 3553-3565.	2.5	25
36	Single Cell Transcriptome Analysis of GATA2 Deficiency in Hematopoiesis Modeled with Induced Pluripotent Stem Cells. Blood, 2018, 132, 5087-5087.	0.6	0

Jizhong Zou

#	Article	IF	CITATIONS
37	Generation of Fanconi Anemia iPSC Clones By Addition of a Small Molecule Inhibitor of p53 during Reprogramming. Blood, 2018, 132, 3857-3857.	0.6	1
38	Targeted Repair of CYBB in X-CGD iPSCs Requires Retention of Intronic Sequences for Expression and Functional Correction. Molecular Therapy, 2017, 25, 321-330.	3.7	45
39	Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress. Scientific Reports, 2017, 7, 2093.	1.6	31
40	Rhesus iPSC Safe Harbor Gene-Editing Platform for Stable Expression of Transgenes in Differentiated Cells of All Germ Layers. Molecular Therapy, 2017, 25, 44-53.	3.7	26
41	CRISPR/Cas9â€Based Safeâ€Harbor Gene Editing in Rhesus iPSCs. Current Protocols in Stem Cell Biology, 2017, 43, 5A.11.1-5A.11.14.	3.0	6
42	Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics. Orphanet Journal of Rare Diseases, 2017, 12, 120.	1.2	18
43	Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin-Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem Cells Translational Medicine, 2017, 6, 527-538.	1.6	59
44	Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines. , 2016, 57, ORSFI1.		35
45	527. Improvement of Pre-Clinical Non-Human Primate Model for Pluripotent Stem Cell Based Therapies by Introducing Marker Genes in Safe Harbor Locus. Molecular Therapy, 2016, 24, S210-S211.	3.7	0
46	The Role of Nonhuman Primate Animal Models in the Clinical Development of Pluripotent Stem Cell Therapies. Molecular Therapy, 2016, 24, 1165-1169.	3.7	11
47	Roles of H3K27me2 and H3K27me3 Examined during Fate Specification of Embryonic Stem Cells. Cell Reports, 2016, 17, 1369-1382.	2.9	66
48	Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks. Stem Cells, 2015, 33, 3504-3518.	1.4	153
49	57. Seamless Targeted Correction of CYBB Exon 5 Mutations Restores Granulocyte Function in X-Linked Chronic Granulomatous Disease iPSCs. Molecular Therapy, 2015, 23, S25.	3.7	0
50	Selectable Markers for Gene Therapy. , 2015, , 701-740.		0
51	A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors. Neural Development, 2015, 10, 18.	1.1	52
52	Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood, 2015, 126, 629-639.	0.6	110
53	Transfection, Selection, and Colony-picking of Human Induced Pluripotent Stem Cells TALEN-targeted with a GFP Gene into the AAVS1 Safe Harbor. Journal of Visualized Experiments, 2015, , .	0.2	8
54	An AAVS1-Targeted Minigene Platform for Correction of iPSCs From All Five Types of Chronic Granulomatous Disease. Molecular Therapy, 2015, 23, 147-157.	3.7	63

JIZHONG ZOU

#	Article	IF	CITATIONS
55	Transcription Activator-Like Effector Nuclease (TALEN)-Mediated CLYBL Targeting Enables Enhanced Transgene Expression and One-Step Generation of Dual Reporter Human Induced Pluripotent Stem Cell (iPSC) and Neural Stem Cell (NSC) Lines. PLoS ONE, 2015, 10, e0116032.	1.1	84
56	Generation of GFP Reporter Human Induced Pluripotent Stem Cells Using AAVS1 Safe Harbor Transcription Activatorâ€Like Effector Nuclease. Current Protocols in Stem Cell Biology, 2014, 29, 5A.7.1-18.	3.0	18
57	Stable Enhanced Green Fluorescent Protein Expression After Differentiation and Transplantation of Reporter Human Induced Pluripotent Stem Cells Generated by AAVS1 Transcription Activator-Like Effector Nucleases. Stem Cells Translational Medicine, 2014, 3, 821-835.	1.6	67
58	Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 2014, 515, 414-418.	13.7	471
59	25: INDUCED PLURIPOTENT STEM CELLS AND GENE TARGETING FOR REGENERATIVE MEDICINE. ICP Textbooks in Biomolecular Sciences, 2014, , 477-490.	0.1	0
60	Interactome Maps of Mouse Gene Regulatory Domains Reveal Basic Principles of Transcriptional Regulation. Cell, 2013, 155, 1507-1520.	13.5	299
61	Generation of Glycosylphosphatidylinositol Anchor Protein-Deficient Blood Cells From Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2013, 2, 819-829.	1.6	18
62	A Platform Minigene AAVS1 Targeted Safe Harbor Approach For Genetic Correction Of iPSC Derived From Patients With Each Of The 5 Genetic Forms Of Chronic Granulomatous Disease. Blood, 2013, 122, 1024-1024.	0.6	0
63	Generation of GPI Anchor Deficient Blood Cells From Human iPSCs Blood, 2012, 120, 2358-2358.	0.6	0
64	Segment-specific regulation of the Drosophila AP-2 gene during leg and antennal development. Developmental Biology, 2011, 355, 336-348.	0.9	10
65	Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease–mediated safe harbor targeting. Blood, 2011, 117, 5561-5572.	0.6	232
66	Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood, 2011, 118, 4599-4608.	0.6	285
67	Butyrate Greatly Enhances Derivation of Human Induced Pluripotent Stem Cells by Promoting Epigenetic Remodeling and the Expression of Pluripotency-Associated Genes. Stem Cells, 2010, 28, 713-720.	1.4	385
68	Double knockouts in human embryonic stem cells. Cell Research, 2010, 20, 250-252.	5.7	5
69	Gene Targeting of a Disease-Related Gene in Human Induced Pluripotent Stem and Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 97-110.	5.2	505
70	Improved Efficiency and Pace of Generating Induced Pluripotent Stem Cells from Human Adult and Fetal Fibroblasts. Stem Cells, 2008, 26, 1998-2005.	1.4	266
71	Trophoblast Differentiation Defect in Human Embryonic Stem Cells Lacking PIG-A and GPI-Anchored Cell-Surface Proteins. Cell Stem Cell, 2008, 2, 345-355.	5.2	50
72	Notch Signaling Activation in Human Embryonic Stem Cells Is Required for Embryonic, but Not Trophoblastic, Lineage Commitment. Cell Stem Cell, 2008, 2, 461-471.	5.2	98