
Seung Zeon Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7670016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A 3nm-thick, quasi-single crystalline Cu layer with ultralow optoelectrical losses and exceptional durability. Acta Materialia, 2022, 223, 117484.	7.9	5
2	Simple optimization for strength and conductivity of Cu-Ni-Si alloy with discontinuous precipitation. Materials Characterization, 2022, 184, 111605.	4.4	7
3	Formation process of fatigue slip bands with unique configurations of ultrafine-grained high-purity Cu fabricated by severe plastic deformation. Journal of Alloys and Compounds, 2022, 899, 163263.	5.5	3
4	Co and Ti effect on hot workability of phosphor bronze. Journal of Alloys and Compounds, 2022, 903, 163778.	5.5	5
5	Coherent interface driven super-plastic elongation of brittle intermetallic nano-fibers at room temperature. Journal of Materials Science and Technology, 2022, 115, 97-102.	10.7	2
6	Strategy for Fabricating Ultrathin Au Film Electrodes with Ultralow Optoelectrical Losses and High Stability. ACS Applied Materials & Interfaces, 2022, 14, 12797-12811.	8.0	9
7	Thermodynamically driven Al migration across ultrathin Ag layered electrodes without thermal loading. Applied Surface Science, 2022, 588, 152907.	6.1	3
8	Alloy design strategies to increase strength and its trade-offs together. Progress in Materials Science, 2021, 117, 100720.	32.8	77
9	Effect of pre-deformation before aging on discontinuous precipitation behaviour in Cu-Ni-Si alloys. Philosophical Magazine Letters, 2021, 101, 51-59.	1.2	3
10	An unexpected role of atomic oxygen dopants in Au evolution from clusters to a layer. Acta Materialia, 2021, 202, 277-289.	7.9	15
11	Nonconventional nucleation and growth of Au nanoparticles with improved adhesion on oxygen-excessive oxide surfaces. Applied Surface Science, 2021, 553, 149385.	6.1	13
12	Effects of substantial atomic-oxygen migration across silverÂâ^'Âoxide interfaces during silver growth. Applied Surface Science, 2021, 568, 150927.	6.1	12
13	An unexpected surfactant role of immiscible nitrogen in the structural development of silver nanoparticles: an experimental and numerical investigation. Nanoscale, 2020, 12, 1749-1758.	5.6	21
14	Strategy for improving Ag wetting on oxides: Coalescence dynamics versus nucleation density. Applied Surface Science, 2020, 510, 145515.	6.1	32
15	The effect of bimodal structure with nanofibers and normal precipitates on the mechanical and electrical properties of Cu Ni Si alloy. Materials Characterization, 2020, 170, 110642.	4.4	8
16	Accelerating heterogeneous nucleation to increase hardness and electrical conductivity by deformation prior to ageing for Cu-4 at.% Ti alloy. Philosophical Magazine Letters, 2019, 99, 275-283.	1.2	5
17	Discontinuous precipitation at the deformation band in copper alloy. Metals and Materials International, 2018, 24, 23-27.	3.4	18
18	Ultrathin Silver Film Electrodes with Ultralow Optical and Electrical Losses for Flexible Organic Photovoltaics. ACS Applied Materials & Interfaces, 2018, 10, 27510-27520.	8.0	80

Seung Zeon Han

#	Article	IF	CITATIONS
19	Optical Transmittance Enhancement of Flexible Copper Film Electrodes with a Wetting Layer for Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 38695-38705.	8.0	44
20	Simultaneous increase in strength and ductility by decreasing interface energy between Zn and Al phases in cast Al-Zn-Cu alloy. Scientific Reports, 2017, 7, 12195.	3.3	7
21	Optimization of conductivity and strength in Cu-Ni-Si alloys by suppressing discontinuous precipitation. Metals and Materials International, 2016, 22, 1049-1054.	3.4	34
22	Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound. Scientific Reports, 2016, 6, 30907.	3.3	40
23	Increasing toughness by promoting discontinuous precipitation in Cu–Ni–Si alloys. Philosophical Magazine Letters, 2016, 96, 196-203.	1.2	20
24	Design of exceptionally strong and conductive Cu alloys beyond the conventional speculation via the interfacial energy-controlled dispersion of Î ³ -Al2O3 nanoparticles. Scientific Reports, 2015, 5, 17364.	3.3	31
25	Ti-added alumina dispersion-strengthened Cu alloy fabricated by oxidation. Journal of Alloys and Compounds, 2015, 622, 384-387.	5.5	19
26	Grain growth in ultrafine grain sized copper during cyclic deformation. Journal of Alloys and Compounds, 2014, 615, S587-S589.	5.5	18
27	Microstructural evaluation of interfacial intermetallic compounds in Cu wire bonding with Al and Au pads. Acta Materialia, 2014, 64, 356-366.	7.9	57
28	Nano-Eutectic Growth in Co-17.8 wt%Gd Alloy Ribbons and the Magnetostrictive Properties at Different Wheel Speeds. Journal of Nanoscience and Nanotechnology, 2014, 14, 8572-8577.	0.9	2
29	Tensile and electrical properties of direct aged Cu-Ni-Si-x%Ti alloys. Metals and Materials International, 2013, 19, 183-188.	3.4	22
30	Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys. Metals and Materials International, 2013, 19, 61-65.	3.4	27
31	Effects of C addition and thermo-mechanical treatments on microstructures and properties of Cu–Fe–P alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 652-658.	5.6	33
32	Fatigue Strength of Ultrafine Grained Copper Treated by Post-ECAP Mild Annealing. Advanced Materials Research, 2011, 275, 23-26.	0.3	1
33	Influence of Vanadium on Aging Characteristics of Cold Rolled Cu-Ni-Si Alloy. Materials Science Forum, 2010, 658, 256-259.	0.3	1
34	Fatigue damage generation in ECAPed oxygen free copper. Journal of Alloys and Compounds, 2009, 483, 159-161.	5.5	10
35	FATIGUE DAMAGE OF ULTRAFINE GRAINED OXYGEN-FREE COPPER. International Journal of Modern Physics B, 2006, 20, 4219-4224.	2.0	3
36	A correction to optimum alloy composition for design of high-temperature high-strength AlTiVZr alloys through thermodynamic calculations. Scripta Materialia, 1997, 37, 93-97.	5.2	5

#	Article	IF	CITATIONS
37	Effect of alloyed Ti:Zr ratio on phase stability of Al66Mn9(Ti, Zr)25 intermetallic compounds. Intermetallics, 1996, 4, 245-249.	3.9	10
38	Bonding structure and optical bandgap of rf sputtered hydrogenated amorphous silicon carbide alloy films. Journal of Non-Crystalline Solids, 1994, 170, 199-204.	3.1	29