ThérÃ"se Di Paolo-ChÃanevert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7669888/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroactive steroids and Parkinson's disease. Current Opinion in Endocrine and Metabolic Research, 2022, 22, 100312.	0.6	4
2	Prevention of L-Dopa-Induced Dyskinesias by MPEP Blockade of Metabotropic Glutamate Receptor 5 Is Associated with Reduced Inflammation in the Brain of Parkinsonian Monkeys. Cells, 2022, 11, 691.	1.8	8
3	Liquid chromatography coupled to tandem mass spectrometry methods for the selective and sensitive determination of 24Sâ€hydroxycholesterol, its sulfate, and/or glucuronide conjugates in plasma. Journal of Mass Spectrometry, 2022, 57, e4827.	0.7	2
4	Differential contribution of estrogen receptors to the intestinal therapeutic effects of 17β-estradiol in a murine model of Parkinson's disease. Brain Research Bulletin, 2022, 187, 85-97.	1.4	3
5	Effect of sex and gonadectomy on brain MPTP toxicity and response to dutasteride treatment in mice. Neuropharmacology, 2021, 201, 108784.	2.0	12
6	Androgens and Parkinson's Disease: A Review of Human Studies and Animal Models. Androgens: Clinical Research and Therapeutics, 2021, 2, 294-303.	0.2	6
7	Neuroprotection and immunomodulation of progesterone in the gut of a mouse model of Parkinson's disease. Journal of Neuroendocrinology, 2020, 32, e12782.	1.2	10
8	Levodopa partially rescues microglial numerical, morphological, and phagolysosomal alterations in a monkey model of Parkinson's disease. Brain, Behavior, and Immunity, 2020, 90, 81-96.	2.0	26
9	Neuroprotection and immunomodulation in the gut of parkinsonian mice with a plasmalogen precursor. Brain Research, 2019, 1725, 146460.	1.1	13
10	Repurposing sex steroids and related drugs as potential treatment for Parkinson's disease. Neuropharmacology, 2019, 147, 37-54.	2.0	49
11	Steroid 5α-reductase 2 deficiency leads to reduced dominance-related and impulse-control behaviors. Psychoneuroendocrinology, 2018, 91, 95-104.	1.3	15
12	Membrane cholesterol removal and replenishment affect rat and monkey brain monoamine transporters. Neuropharmacology, 2018, 133, 289-306.	2.0	8
13	Non-human primate models of PD to test novel therapies. Journal of Neural Transmission, 2018, 125, 291-324.	1.4	29
14	Natural Phytoestrogens. , 2018, , 9-61.		5
15	The plasmalogen precursor analog PPI-1011 reduces the development of L-DOPA-induced dyskinesias in de novo MPTP monkeys. Behavioural Brain Research, 2018, 337, 183-185.	1.2	6
16	Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys. Frontiers in Neuroanatomy, 2018, 12, 38.	0.9	16
17	An m <scp>G</scp> lu4â€ <scp>P</scp> ositive <scp>A</scp> llosteric <scp>M</scp> odulator <scp>A</scp> lleviates <scp>P</scp> arkinsonism in <scp>P</scp> rimates. Movement Disorders, 2018, 33, 1619-1631.	2.2	44
18	Metabotropic glutamate receptors as therapeutic targets in Parkinson's disease: An update from the last 5 years of research. Neuropharmacology, 2017, 115, 166-179.	2.0	70

#	Article	IF	CITATIONS
19	Effects of progesterone administered after MPTP on dopaminergic neurons of male mice. Neuropharmacology, 2017, 117, 209-218.	2.0	23
20	Effect of the 5α-reductase enzyme inhibitor dutasteride in the brain of intact and parkinsonian mice. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 242-256.	1.2	16
21	Plasmalogen precursor mitigates striatal dopamine loss in MPTP mice. Brain Research, 2017, 1674, 70-76.	1.1	12
22	mGlu5 Receptors in Parkinson's Disease and MPTP-Lesioned Monkeys: Behavior and Brain Molecular Correlates. Receptors, 2017, , 183-205.	0.2	0
23	Gastrointestinal Dysfunctions in Parkinson's Disease: Symptoms and Treatments. Parkinson's Disease, 2016, 2016, 1-23.	0.6	79
24	mGlu5, Dopamine D ₂ and Adenosine A _{2A} Receptors in L-DOPA-induced Dyskinesias. Current Neuropharmacology, 2016, 14, 481-493.	1.4	17
25	A Placebo-Controlled Trial of AQW051 in Patients With Moderate to Severe Levodopa-Induced Dyskinesia. Movement Disorders, 2016, 31, 1049-1054.	2.2	28
26	The number of striatal cholinergic interneurons expressing calretinin is increased in parkinsonian monkeys. Neurobiology of Disease, 2016, 95, 46-53.	2.1	15
27	Brain α7 nicotinic acetylcholine receptors in MPTP-lesioned monkeys and parkinsonian patients. Biochemical Pharmacology, 2016, 109, 62-69.	2.0	8
28	Neuroprotective and immunomodulatory effects of raloxifene in the myenteric plexus of a mouse model of Parkinson's disease. Neurobiology of Aging, 2016, 48, 61-71.	1.5	22
29	Estrogen receptors modulate striatal metabotropic receptor type 5 in intact and MPTP male mice model of Parkinson's disease. Journal of Steroid Biochemistry and Molecular Biology, 2016, 161, 84-91.	1.2	7
30	Neuroactive gonadal drugs for neuroprotection in male and female models of Parkinson's disease. Neuroscience and Biobehavioral Reviews, 2016, 67, 79-88.	2.9	36
31	Neuroprotective Effect of Progesterone in MPTP-Treated Male Mice. Neuroendocrinology, 2016, 103, 300-314.	1.2	31
32	Plasmalogen Augmentation Reverses Striatal Dopamine Loss in MPTP Mice. PLoS ONE, 2016, 11, e0151020.	1.1	40
33	The 5α-reductase inhibitor Dutasteride but not Finasteride protects dopamine neurons in the MPTP mouse model of Parkinson's disease. Neuropharmacology, 2015, 97, 86-94.	2.0	30
34	Effect of a chronic treatment with an mGlu5 receptor antagonist on brain serotonin markers in parkinsonian monkeys. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 56, 27-38.	2.5	10
35	Neuroprotection in Parkinsonian-treated mice via estrogen receptor α activation requires G protein-coupled estrogen receptor 1. Neuropharmacology, 2015, 95, 343-352.	2.0	48
36	GPER1-mediated immunomodulation and neuroprotection in the myenteric plexus of a mouse model of Parkinson's disease. Neurobiology of Disease, 2015, 82, 99-113.	2.1	45

ThérÃ[™]se Di Paolo-ChÃ≜nev

#	Article	IF	CITATIONS
37	Plasmalogen precursor analog treatment reduces levodopa-induced dyskinesias in parkinsonian monkeys. Behavioural Brain Research, 2015, 286, 328-337.	1.2	20
38	Contribution of brain serotonin subtype 1B receptors in levodopa-induced motor complications. Neuropharmacology, 2015, 99, 356-368.	2.0	13
39	Changes in glutamate receptors in dyskinetic parkinsonian monkeys after unilateral subthalamotomy. Journal of Neurosurgery, 2015, 123, 1383-1393.	0.9	3
40	Subthalamotomy in the treatment of Parkinson's disease: clinical aspects and mechanisms of action. Journal of Neurosurgery, 2014, 120, 140-151.	0.9	29
41	Pharmacological Treatments Inhibiting Levodopa-Induced Dyskinesias in MPTP-Lesioned Monkeys: Brain Glutamate Biochemical Correlates. Frontiers in Neurology, 2014, 5, 144.	1.1	31
42	Raloxifene activates G protein-coupled estrogen receptor 1/Akt signaling to protect dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. Neurobiology of Aging, 2014, 35, 2347-2356.	1.5	50
43	Long-term treatment with I-DOPA and an mGlu5 receptor antagonist prevents changes in brain basal ganglia dopamine receptors, their associated signaling proteins and neuropeptides in parkinsonian monkeys. Neuropharmacology, 2014, 79, 688-706.	2.0	26
44	Subthalamotomy-induced changes in dopamine receptors in parkinsonian monkeys. Experimental Neurology, 2014, 261, 816-825.	2.0	2
45	Interaction of Adenosine Receptors with Other Receptors from Therapeutic Perspective in Parkinson's Disease. International Review of Neurobiology, 2014, 119, 151-167.	0.9	15
46	Modeling dyskinesia in animal models of Parkinson disease. Experimental Neurology, 2014, 256, 105-116.	2.0	77
47	Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Parkinsonism and Related Disorders, 2014, 20, 947-956.	1.1	93
48	AQW051, a novel and selective nicotinic acetylcholine receptor α7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys. Parkinsonism and Related Disorders, 2014, 20, 1119-1123.	1.1	41
49	Dopamine Receptors and Levodopa-Induced Dyskinesia. , 2014, , 171-197.		0
50	Basal ganglia serotonin 1B receptors in parkinsonian monkeys with L-DOPA-induced dyskinesia. Biochemical Pharmacology, 2013, 86, 970-978.	2.0	19
51	Safinamide reduces dyskinesias and prolongs l-DOPA antiparkinsonian effect in parkinsonian monkeys. Parkinsonism and Related Disorders, 2013, 19, 508-514.	1.1	68
52	Implication of GPER1 in neuroprotection in a mouse model of Parkinson's disease. Neurobiology of Aging, 2013, 34, 887-901.	1.5	53
53	MPEP, an mGlu5 receptor antagonist, reduces the development of I-DOPA-induced motor complications in de novo parkinsonian monkeys: Biochemical correlates. Neuropharmacology, 2013, 66, 355-364.	2.0	57
54	Estradiol and brain serotonin reuptake transporter in long-term ovariectomized parkinsonian monkeys. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 45, 170-177.	2.5	11

#	Article	IF	CITATIONS
55	Chronic treatment with MPEP, an mGlu5 receptor antagonist, normalizes basal ganglia glutamate neurotransmission in l-DOPA-treated parkinsonian monkeys. Neuropharmacology, 2013, 73, 216-231.	2.0	52
56	Potentiation of response to low doses of levodopa in MPTP-injected monkeys by chemical unilateral subthalamotomy. Journal of Neurosurgery, 2013, 118, 180-191.	0.9	9
57	Oestradiol Modulation of Serotonin Reuptake Transporter and Serotonin Metabolism in the Brain of Monkeys. Journal of Neuroendocrinology, 2013, 25, 560-569.	1.2	34
58	Metabotropic Glutamate Receptors for Parkinson's Disease Therapy. Parkinson's Disease, 2013, 2013, 1-11.	0.6	38
59	Defective dentate nucleus GABA receptors in essential tremor. Brain, 2012, 135, 105-116.	3.7	163
60	Effect of chronic l-DOPA treatment on 5-HT1A receptors in parkinsonian monkey brain. Neurochemistry International, 2012, 61, 1160-1171.	1.9	17
61	Sex and temporally-dependent effects of methamphetamine toxicity on dopamine markers and signaling pathways. Neuropharmacology, 2012, 62, 2363-2372.	2.0	17
62	Effect of a chronic treatment with 17β-estradiol on striatal dopamine neurotransmission and the Akt/GSK3 signaling pathway in the brain of ovariectomized monkeys. Psychoneuroendocrinology, 2012, 37, 280-291.	1.3	20
63	Signaling pathways mediating the neuroprotective effects of sex steroids and SERMs in Parkinson's disease. Frontiers in Neuroendocrinology, 2012, 33, 169-178.	2.5	57
64	The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in l-Dopa-treated parkinsonian monkeys. Parkinsonism and Related Disorders, 2011, 17, 270-276.	1.1	96
65	Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiology of Aging, 2011, 32, 1286-1295.	1.5	85
66	Estradiol modulation of cortical, striatal and raphe nucleus 5-HT1A and 5-HT2A receptors of female hemiparkinsonian monkeys after long-term ovariectomy. Neuropharmacology, 2011, 60, 642-652.	2.0	23
67	Estrogen receptors and gonadal steroids in vulnerability and protection of dopamine neurons in a mouse model of Parkinson's disease. Neuropharmacology, 2011, 61, 583-591.	2.0	37
68	Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias. European Journal of Neuroscience, 2011, 33, 1823-1831.	1.2	47
69	Sex differences in methamphetamine toxicity in mice: Effect on brain dopamine signaling pathways. Psychoneuroendocrinology, 2011, 36, 955-969.	1.3	44
70	AFQ056 treatment of levodopaâ€induced dyskinesias: Results of 2 randomized controlled trials. Movement Disorders, 2011, 26, 1243-1250.	2.2	162
71	Male/female differences in neuroprotection and neuromodulation of brain dopamine. Frontiers in Endocrinology, 2011, 2, 35.	1.5	26
72	BDNF levels are not related with levodopaâ€induced dyskinesias in MPTP monkeys. Movement Disorders, 2010, 25, 116-121.	2.2	10

#	Article	IF	CITATIONS
73	Effect of lâ€Dopa on metabotropic glutamate receptor 5 in the brain of parkinsonian monkeys. Journal of Neurochemistry, 2010, 113, 715-724.	2.1	37
74	Striatal Akt/GSK3 signaling pathway in the development of L-Dopa-induced dyskinesias in MPTP monkeys. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 446-454.	2.5	41
75	Effect of non-dopaminergic drug treatment on Levodopa induced dyskinesias in MPTP monkeys: Common implication of striatal neuropeptides. Neuropharmacology, 2010, 58, 286-296.	2.0	40
76	Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology, 2010, 58, 981-986.	2.0	108
77	Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience, 2010, 167, 1160-1167.	1.1	45
78	Steroidsâ€Ðopamine Interactions in the Pathophysiology and Treatment of CNS Disorders. CNS Neuroscience and Therapeutics, 2010, 16, e43-71.	1.9	117
79	Preladenant, a selective A2A receptor antagonist, is active in primate models of movement disorders. Experimental Neurology, 2010, 225, 384-390.	2.0	89
80	Nur77 mRNA levels and L-Dopa-induced dyskinesias in MPTP monkeys treated with docosahexaenoic acid. Neurobiology of Disease, 2009, 36, 213-222.	2.1	32
81	Neuroprotective actions of sex steroids in Parkinson's disease. Frontiers in Neuroendocrinology, 2009, 30, 142-157.	2.5	206
82	Genetic alteration in the dopamine transporter differentially affects male and female nigrostriatal transporter systems. Biochemical Pharmacology, 2009, 78, 1401-1411.	2.0	13
83	Effect of estradiol on striatal dopamine activity of female hemiparkinsonian monkeys. Journal of Neuroscience Research, 2009, 87, 1634-1644.	1.3	25
84	Implication of NMDA Receptors in the Antidyskinetic Activity of Cabergoline, CI-1041, and Ro 61-8048 in MPTP Monkeys with Levodopa-induced Dyskinesias. Journal of Molecular Neuroscience, 2009, 38, 128-142.	1.1	43
85	Low doses of sarizotan reduce dyskinesias and maintain antiparkinsonian efficacy of l-Dopa in parkinsonian monkeys. Parkinsonism and Related Disorders, 2009, 15, 445-452.	1.1	94
86	Metabotropic Glutamate Receptor II in the Brains of Parkinsonian Patients. Journal of Neuropathology and Experimental Neurology, 2009, 68, 374-382.	0.9	27
87	Normalization of GABA _A receptor specific binding in the substantia nigra reticulata and the prevention of <scp>L</scp> â€dopaâ€induced dyskinesias in MPTP parkinsonian monkeys. Synapse, 2008, 62, 101-109.	0.6	11
88	Estrogen and SERM neuroprotection in animal models of Parkinson's disease. Molecular and Cellular Endocrinology, 2008, 290, 60-69.	1.6	117
89	l-Dopa treatment abolishes the numerical increase in striatal dopaminergic neurons in parkinsonian monkeys. Journal of Chemical Neuroanatomy, 2008, 35, 77-84.	1.0	25
90	mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiology of Aging, 2008, 29, 1040-1051.	1.5	121

#	Article	IF	CITATIONS
91	Basal ganglia group II metabotropic glutamate receptors specific binding in non-human primate model of L-Dopa-induced dyskinesias. Neuropharmacology, 2008, 54, 258-268.	2.0	49
92	Prolonged kynurenine 3-hydroxylase inhibition reduces development of levodopa-induced dyskinesias in parkinsonian monkeys. Behavioural Brain Research, 2008, 186, 161-167.	1.2	77
93	Role of adenosine A2A receptors in parkinsonian motor impairment and I-DOPA-induced motor complications. Progress in Neurobiology, 2007, 83, 293-309.	2.8	136
94	Role of estrogen receptors in neuroprotection by estradiol against MPTP toxicity. Neuropharmacology, 2007, 52, 1509-1520.	2.0	45
95	Functional neurochemistry of the basal ganglia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 19-66.	1.0	12
96	Tamoxifen protects male mice nigrostriatal dopamine against methamphetamine-induced toxicity. Biochemical Pharmacology, 2007, 74, 1413-1423.	2.0	25
97	Nur77 Gene Knockout Alters Dopamine Neuron Biochemical Activity and Dopamine Turnover. Biological Psychiatry, 2006, 60, 538-547.	0.7	40
98	Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochemistry International, 2006, 48, 404-414.	1.9	98
99	DHEA improves symptomatic treatment of moderately and severely impaired MPTP monkeys. Neurobiology of Aging, 2006, 27, 1684-1693.	1.5	27
100	ERβ mediates the estradiol increase of D2 receptors in rat striatum and nucleus accumbens. Neuropharmacology, 2006, 50, 451-457.	2.0	96
101	Prevention of dyskinesia by an NMDA receptor antagonist in MPTP monkeys: Effect on adenosine A2A receptors. Synapse, 2006, 60, 239-250.	0.6	41
102	Prevention of levodopa-induced dyskinesias by a selective NR1A/2BN-methyl-D-aspartate receptor antagonist in parkinsonian monkeys: Implication of preproenkephalin. Movement Disorders, 2006, 21, 9-17.	2.2	61
103	Selective estrogen receptor-α but not -β agonist treatment modulates brain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Journal of Neuroscience Research, 2006, 84, 1076-1084.	1.3	14
104	Docosahexaenoic acid reduces levodopaâ€induced dyskinesias in 1â€methylâ€4â€phenylâ€1,2,3,6â€ŧetrahydropyridine monkeys. Annals of Neurology, 2006, 59, 282-288.	2.8	96
105	Implication of the Phosphatidylinositol-3 Kinase/Protein Kinase B Signaling Pathway in the Neuroprotective Effect of Estradiol in the Striatum of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mice. Molecular Pharmacology, 2006, 69, 1492-1498.	1.0	97
106	Chronic estrogenic drug treatment increases preproenkephalin mRNA levels in the rat striatum and nucleus accumbens. Psychoneuroendocrinology, 2005, 30, 251-260.	1.3	32
107	Regulation of striatal preproenkephalin mRNA levels in MPTP-lesioned mice treated with estradiol. Journal of Neuroscience Research, 2005, 80, 138-144.	1.3	14
108	Differential Protective Properties of Estradiol and Tamoxifen against Methamphetamine-Induced Nigrostriatal Dopaminergic Toxicity in Mice. Neuroendocrinology, 2005, 82, 111-120.	1.2	29

#	Article	IF	CITATIONS
109	Naltrexone in the short-term decreases antiparkinsonian response to -Dopa and in the long-term increases dyskinesias in drug-naÃ ⁻ ve parkinsonian monkeys. Neuropharmacology, 2005, 49, 165-173.	2.0	16
110	Changes in 5-HT1A receptor binding and G-protein activation in the rat brain after estrogen treatment: comparison with tamoxifen and raloxifene. Journal of Psychiatry and Neuroscience, 2005, 30, 110-7.	1.4	31
111	Dopamine Transporter as a Marker of Neuroprotection in Methamphetamine-Lesioned Mice Treated Acutely with Estradiol. Neuroendocrinology, 2004, 79, 296-304.	1.2	25
112	Increased adenosine A2A receptors in the brain of Parkinson's disease patients with dyskinesias. Brain, 2004, 127, 1075-1084.	3.7	189
113	Human brain dopamine metabolism in levodopa-induced dyskinesia and wearing-off. Parkinsonism and Related Disorders, 2004, 10, 221-226.	1.1	37
114	Relevance of the MPTP primate model in the study of dyskinesia priming mechanisms. Parkinsonism and Related Disorders, 2004, 10, 297-304.	1.1	59
115	Effect of estrogen receptor agonists treatment in MPTP mice: evidence of neuroprotection by an ERα agonist. Neuropharmacology, 2004, 47, 1180-1188.	2.0	83
116	Estradiol and Dehydroepiandrosterone Potentiate Levodopa-Induced Locomotor Activity in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Monkeys. Endocrine, 2003, 21, 97-102.	2.2	22
117	Changes of GABA receptors and dopamine turnover in the postmortem brains of parkinsonians with levodopa-induced motor complications. Movement Disorders, 2003, 18, 241-253.	2.2	102
118	Dehydroepiandrosterone (DHEA) such as 17?-estradiol prevents MPTP-induced dopamine depletion in mice. Synapse, 2003, 47, 10-14.	0.6	88
119	Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson's disease. Neurobiology of Disease, 2003, 14, 404-416.	2.1	208
120	Effect of chronic estradiol, tamoxifen or raloxifene treatment on serotonin 5-HT1A receptor. Molecular Brain Research, 2003, 112, 82-89.	2.5	42
121	Estrogenic Properties of Raloxifene, but Not Tamoxifen, on D ₂ and D ₃ Dopamine Receptors in the Rat Forebrain. Neuroendocrinology, 2002, 76, 214-222.	1.2	75
122	Increase of Preproenkephalin mRNA Levels in the Putamen of Parkinson Disease Patients with Levodopa-Induced Dyskinesias. Journal of Neuropathology and Experimental Neurology, 2002, 61, 186-196.	0.9	118
123	Levodopa response motor complications—GABA receptors and preproenkephalin expression in human brain. Parkinsonism and Related Disorders, 2002, 8, 449-454.	1.1	41
124	Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2002, 26, 127-138.	2.5	85
125	Effects of ovariectomy and estradiol on acoustic startle responses in rats. Pharmacology Biochemistry and Behavior, 2002, 74, 103-109.	1.3	21
126	Evaluation of the protective effect of oestradiol against toxicity induced by 6-hydroxydopamine and 1-methyl-4-phenylpyridinium ion (MPP+) towards dopaminergic mesencephalic neurones in primary culture. Journal of Neurochemistry, 2002, 80, 307-316.	2.1	49

ThérÃ[∵]se Di Paolo-ChÃ≜nev

#	Article	IF	CITATIONS
127	Estrogenic modulation of brain activity: implications for schizophrenia and Parkinson's disease. Journal of Psychiatry and Neuroscience, 2002, 27, 12-27.	1.4	107
128	Elevated levels of ΔFosB and RCS9 in striatum in Parkinson's disease. Biological Psychiatry, 2001, 50, 813-816.	0.7	107
129	Ovarian steroids and selective estrogen receptor modulators activity on rat brain NMDA and AMPA receptors. Brain Research Reviews, 2001, 37, 153-161.	9.1	144
130	Estrogenic activity of tamoxifen and raloxifene on rat brain AMPA receptors. NeuroReport, 2001, 12, 535-539.	0.6	25
131	Central 5-Hydroxytryptamine-2A Receptor Expression in Transgenic Mice Bearing a Glucocorticoid Receptor Antisense. Neuroendocrinology, 2001, 73, 37-45.	1.2	12
132	Effect of MPTP-induced denervation on basal ganglia GABABreceptors: Correlation with dopamine concentrations and dopamine transporter. Synapse, 2001, 40, 225-234.	0.6	31
133	Neuroprotective properties of 17β-estradiol, progesterone, and raloxifene in MPTPC57Bl/6 mice. Synapse, 2001, 41, 131-138.	0.6	170
134	Estrogen-like Activity of Tamoxifen and Raloxifene on NMDA Receptor Binding and Expression of its Subunits in Rat Brain. Neuropsychopharmacology, 2001, 25, 242-257.	2.8	68
135	Ovarian steroids and raloxifene prevent MPTP-induced dopamine depletion in mice. NeuroReport, 2000, 11, 343-346.	0.6	133
136	Stereospecific prevention by 17?-estradiol of MPTP-induced dopamine depletion in mice. Synapse, 2000, 37, 245-251.	0.6	109
137	Modulation by Estrogen-Receptor Directed Drugs of 5-Hydroxytryptamine-2A Receptors in Rat Brain. Neuropsychopharmacology, 2000, 23, 69-78.	2.8	96
138	125I-CGP 64213 Binding to GABAB Receptors in the Brain of Monkeys: Effect of MPTP and Dopaminomimetic Treatments. Experimental Neurology, 2000, 163, 191-199.	2.0	35
139	Regulation by chronic treatment with cabergoline of dopamine D1 and D2 receptor levels and their expression in the striatum of Parkinsonian-monkeys. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2000, 24, 607-617.	2.5	16
140	Dopamine-receptor stimulation: biobehavioral and biochemical consequences. Trends in Neurosciences, 2000, 23, S92-S100.	4.2	79
141	Differential Regulation of Striatal Preproenkephalin and Preprotachykinin mRNA Levels in MPTP-Lesioned Monkeys Chronically Treated with Dopamine D1 or D2 Receptor Agonists. Journal of Neurochemistry, 1999, 72, 682-692.	2.1	96
142	Dopamine D1 receptor mRNA and receptor levels in the striatum of MPTP monkeys chronically treated with SKF-82958. European Journal of Pharmacology, 1999, 378, 259-263.	1.7	19
143	Neurotensin receptors and dopamine transporters: Effects of MPTP lesioning and chronic dopaminergic treatments in monkeys. , 1999, 32, 153-164.		30
144	Effect of estradiol and tamoxifen on brain membranes: investigation by infrared and fluorescence spectroscopy. Brain Research Bulletin, 1999, 49, 401-405.	1.4	62

#	Article	IF	CITATIONS
145	Chronic D1 and D2 dopaminomimetic treatment of MPTP-denervated monkeys: effects on basal ganglia GABAA/benzodiazepine receptor complex and GABA content. Neurochemistry International, 1999, 35, 81-91.	1.9	47
146	Effect of dehydroepiandrosterone and its sulfate and fatty acid ester derivatives on rat brain membranes. Steroids, 1999, 64, 796-803.	0.8	14
147	Associative and limbic regions of monkey striatum express high levels of dopamine D3receptors: effects of MPTP and dopamine agonist replacement therapies. European Journal of Neuroscience, 1998, 10, 2565-2573.	1.2	103
148	Interaction of dehydroepiandrosterone with phospholipid membranes:. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1368, 321-328.	1.4	20
149	Effects of a chronic lithium treatment on central dopamine neurotransporters. Biochemical Pharmacology, 1997, 54, 391-397.	2.0	41
150	Ovariectomy and estradiol treatment affect the dopamine transporter and its gene expression in the rat brain. Molecular Brain Research, 1997, 46, 343-346.	2.5	96
151	Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with l-DOPA therapy. Molecular Brain Research, 1997, 49, 55-62.	2.5	107
152	Acute effect of 17β-estradiol and lithium on ovariectomized rat brain biogenic amines metabolism. Journal of Psychiatric Research, 1996, 30, 95-107.	1.5	9
153	The modulation of brain dopamine and GABAA receptors by estradiol: A clue for CNS changes occurring at menopause. Cellular and Molecular Neurobiology, 1996, 16, 199-212.	1.7	74
154	Brain dopamine transporter: gender differences and effect of chronic haloperidol. Brain Research, 1995, 692, 269-272.	1.1	117
155	Progesterone releases dopamine in male and female rat striatum: A behavioral and microdialysis study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1995, 19, 491-497.	2.5	33
156	Effect of adding the D-1 agonist CY 208–243 to chronic bromocriptine treatment of MPTP-monkeys: Regional changes of brain dopamine receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1995, 19, 667-676.	2.5	18
157	Modulation of Brain Dopamine Transmission by Sex Steroids. Reviews in the Neurosciences, 1994, 5, 27-41.	1.4	325
158	Effect of adding the D1 agonist CY 208-243 to chronic bromocriptine treatment. I: Evaluation of motor parameters in relation to striatal catecholamine content and dopamine receptors. Movement Disorders, 1993, 8, 144-150.	2.2	42
159	Modulation by estradiol and progesterone of the GTP effect on striatal D-2 dopamine receptors. Biochemical Pharmacology, 1993, 45, 723-733.	2.0	44
160	Chronic CY 208–243 treatment of MPTP-monkeys causes regional changes of dopamine and GABAA receptors. Neuroscience Letters, 1993, 163, 31-35.	1.0	18
161	Effects of Adrenalectomy and Clucocorticoids on Rat Brain Dopamine Receptors. Neuroendocrinology, 1992, 55, 468-476.	1.2	72
162	Chronic estradiol treatment increases anterior pituitary but not striatal D2 dopamine receptor mRNA levels in rats. Neuroscience Letters, 1992, 140, 5-8.	1.0	19

#	Article	IF	CITATIONS
163	Levodopa-Induced Dyskinesia: Facts and Fancy. What Does the MPTP Monkey Model Tell Us?. Canadian Journal of Neurological Sciences, 1992, 19, 134-137.	0.3	49
164	Modulation of dopamine receptor agonist binding sites by cations and estradiol in intact pituitary and 7315a tumors. Biochemical Pharmacology, 1991, 42, 2163-2169.	2.0	6
165	Effect of the rat estrous cycle at ovariectomy on striatal D-1 dopamine receptors. Brain Research Bulletin, 1990, 24, 281-284.	1.4	31
166	Effect of estradiol and progesterone on rat striatal dopamine uptake sites. Brain Research Bulletin, 1990, 25, 419-422.	1.4	76
167	A physiological dose of estradiol with progesterone affects striatum biogenic amines. Canadian Journal of Physiology and Pharmacology, 1990, 68, 1520-1526.	0.7	37
168	Effect of chronic treatment of MPTP monkeys with dopamine D-1 and/or D-2 receptor agonists. European Journal of Pharmacology, 1990, 178, 115-120.	1.7	83
169	Modulation of dopamine receptors by cations in 7315a, MtTW15 and estradiol-induced pituitary tumors. Biochemical Pharmacology, 1990, 40, 1373-1380.	2.0	2
170	Striatal D1 dopamine receptor density fluctuates during the rat estrous cycle. Neuroscience Letters, 1989, 98, 345-350.	1.0	82
171	Retinal dopamine sensitivity to MPP+ toxicity: electrophysiological and biochemical evaluation. Neuroscience Letters, 1989, 107, 19-25.	1.0	6
172	Different sensitivities to MPTP toxicity in primate nigrostriatal and retinal dopaminergic systems: Electrophysiological and biochemical evidence. Experimental Eye Research, 1989, 49, 543-552.	1.2	3
173	Chronic estradiol treatment increases ovariectomized rat striatal D-1 dopamine receptors. Life Sciences, 1989, 45, 1813-1820.	2.0	40
174	Behavioral and biochemical effect of chronic treatment with D-1 and/or D-2 dopamine agonists in MPTP monkeys. European Journal of Pharmacology, 1988, 150, 59-66.	1.7	76
175	Estradiol and guanine nucleotide modulation of dopamine receptor agonist and antagonist binding sites in 7315a pituitary tumors. Biochemical Pharmacology, 1988, 37, 2373-2379.	2.0	4
176	Sodium and guanine nucleotide regulation of dopamine receptor agonist and antagonist binding sites in MtTW15 pituitary tumors. Canadian Journal of Physiology and Pharmacology, 1988, 66, 246-249.	0.7	3
177	Striatal D-2 dopamine agonist binding sites fluctuate during the rat estrous cycle. Life Sciences, 1988, 43, 665-672.	2.0	100
178	Rapid conversion of high into low striatal D2-dopamine receptor agonist binding states after an acute physiological dose of 17β-estradiol. Neuroscience Letters, 1988, 88, 113-118.	1.0	126
179	Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors. Life Sciences, 1987, 41, 1149-1153.	2.0	3
180	A physiological dose of progesterone affects rat striatum biogenic amine metabolism. European Journal of Pharmacology, 1986, 125, 11-16.	1.7	69

#	Article	IF	CITATIONS
181	Implication of the serotoninergic system in the decreased ACTH response to stress after lesion of the amygdaloid central nucleus. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1985, 9, 665-669.	2.5	9
182	Physiological doses of estradiol can increase lingual dyskinesia and cerebrospinal fluid homovanillic acid in monkeys. Neuroscience Letters, 1985, 58, 327-331.	1.0	11
183	Modulation of brain and pituitary dopamine receptors by estrogens and prolactin. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1985, 9, 473-480.	2.5	32
184	17β-estradiol at a physiological dose acutely increases dopamine turnover in rat brain. European Journal of Pharmacology, 1985, 117, 197-203.	1.7	184
185	Neuroleptic-Like Activity of Estrogens. , 1985, , 237-242.		0
186	Similar effect of estradiol and haloperidol on experimental tardive dyskinesia in monkeys. Psychoneuroendocrinology, 1984, 9, 375-379.	1.3	25
187	Effect of estradiol and haloperidol on hypophysectomized rat brain dopamine receptors. Psychoneuroendocrinology, 1984, 9, 399-404.	1.3	28
188	Effects of a luteinizing hormone-releasing hormone analog on the growth of estrogen-induced prolactin-secreting rat pituitary tumors and its influence on their dopamine receptors. European Journal of Pharmacology, 1984, 102, 383-384.	1.7	5
189	Dopamine receptors in rat pituitary and estradiol-induced pituitary tumor: Effect of chronic treatment with bromocriptine. Biochemical and Biophysical Research Communications, 1984, 123, 312-316.	1.0	13
190	Effect of neonatal hypothyroidism on the serotonin system of the rat brain. Brain Research, 1984, 292, 99-108.	1.1	41
191	Perturbation of Rat Brain Serotonergic Systems Results in an Inverse Relation Between Substance P and Serotonin Concentrations Measured in Discrete Nuclei. Journal of Neurochemistry, 1983, 41, 834-840.	2.1	37
192	Determination of 5-hydroxytryptophan, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid in 20 rat brain nuclei using liquid chromatography with electrochemical detection. Canadian Journal of Physiology and Pharmacology, 1983, 61, 530-534.	0.7	17
193	Biphasic effect of estradiol and domperidone on lingual dyskinesia in monkeys. Experimental Neurology, 1983, 82, 172-182.	2.0	22
194	Prolactin and estradiol increase striatal dopamine receptor density in intact, castrated and hypophysectomized rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1982, 6, 377-382.	2.5	22
195	Effect of prolactin and estradiol on rat striatal dopamine receptors. Life Sciences, 1982, 31, 2921-2929.	2.0	104
196	Distribution of Dopamine in 35 Subregions of the Rat Caudate-Putamen: A High Performance Liquid Chromatography with Electrochemical Detection Analysis. Canadian Journal of Neurological Sciences, 1982, 9, 421-427.	0.3	19
197	Effect of chronic estradiol and haloperidol treatment on striatal dopamine receptors. European Journal of Pharmacology, 1981, 73, 105-106.	1.7	116
198	Effect of Neonatal Thyroid Deficiency on the Catecholamine, Substance P, and Thyrotropin-Releasing Hormone Contents of Discrete Rat Brain Nuclei. Endocrinology, 1981, 108, 2039-2045.	1.4	44

#	Article	IF	CITATIONS
199	Molecular Connectivity Study of Halocarbon Anesthetics. Journal of Pharmaceutical Sciences, 1979, 68, 39-42.	1.6	22
200	Effects of estrogens on the characteristics of [3H]spiroperidol and [3H]RU24213 binding in rat anterior pituitary gland and brain. Molecular and Cellular Endocrinology, 1979, 16, 99-112.	1.6	95
201	Structure-Activity Relationships of Anesthetic Ethers Using Molecular Connectivity. Journal of Pharmaceutical Sciences, 1978, 67, 564-566.	1.6	17
202	Molecular Connectivity in Quantitative Structure-Activity Relationship Study of Anesthetic and Toxic Activity of Aliphatic Hydrocarbons, Ethers, and Ketones. Journal of Pharmaceutical Sciences, 1978, 67, 566-568.	1.6	39
203	Fluorocarbon anaesthetics break hydrogen bonds. Nature, 1974, 252, 471-472.	13.7	33
204	On the Hydrogen Bond Breaking Ability of Fluorocarbons Containing Higher Halogens. Canadian Journal of Chemistry, 1974, 52, 3612-3622.	0.6	71
205	Hydrogen bond breaking potency of fluorocarbon anesthetics. Journal of Medicinal Chemistry, 1974, 17, 809-814.	2.9	48