
Nam Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7669801/publications.pdf Version: 2024-02-01

Νανά Ηανι

#	Article	IF	CITATIONS
1	Reduced thermal resistance of heat sink using graphene oxide decorated with copper nanoparticles. Materials Research Bulletin, 2019, 110, 76-81.	5.2	7
2	Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni(111) by metal-organic chemical vapor deposition. Scientific Reports, 2019, 9, 5736.	3.3	42
3	Characteristics of aluminum nitride films on hexagonal boron nitride buffer layers using various growth methods through metal organic chemical vapor deposition. Journal of Crystal Growth, 2019, 507, 316-320.	1.5	6
4	Defect-Mediated In-Plane Electrical Conduction in Few-Layer sp2-Hybridized Boron Nitrides. ACS Applied Materials & Interfaces, 2018, 10, 17287-17294.	8.0	10
5	Role of hydrogen carrier gas on the growth of few layer hexagonal boron nitrides by metal-organic chemical vapor deposition. AIP Advances, 2017, 7, .	1.3	20
6	Optical and Facet-Dependent Carrier Recombination Properties of Hendecafacet InGaN/GaN Microsized Light Emitters. Crystal Growth and Design, 2017, 17, 3649-3655.	3.0	5
7	Pressure-Dependent Growth of Wafer-Scale Few-layer h-BN by Metal–Organic Chemical Vapor Deposition. Crystal Growth and Design, 2017, 17, 2569-2575.	3.0	21
8	Enhanced thermal stability of reduced graphene oxide-Silicon Schottky heterojunction solar cells via nitrogen doping. Materials Science in Semiconductor Processing, 2017, 59, 45-49.	4.0	15
9	Long-term stability of Si-organic hybrid solar cells with a thermally tunable graphene oxide platform. RSC Advances, 2016, 6, 72342-72350.	3.6	5
10	Reduced junction temperature and enhanced performance of high power light-emitting diodes using reduced graphene oxide pattern. Journal Physics D: Applied Physics, 2015, 48, 265102.	2.8	9
11	Fabrication and Characteristics of GaN-Based Light-Emitting Diodes with a Reduced Graphene Oxide Current-Spreading Layer. ACS Applied Materials & Interfaces, 2014, 6, 22451-22456.	8.0	15
12	Threading dislocation reduction in epitaxial GaN using V-groove patterned sapphire substrate with embedded silica nanospheres. Materials Letters, 2014, 123, 97-100.	2.6	5
13	Stimulated N-doping of reduced graphene oxide on GaN under excimer laser reduction process. Materials Letters, 2014, 116, 412-415.	2.6	13
14	Two-step lateral growth of GaN for improved emission from blue light-emitting diodes. Journal of Crystal Growth, 2013, 372, 157-162.	1.5	1
15	Air-ring microstructure arrays for enhanced light extraction from a face-up light-emitting diode. Optics Letters, 2013, 38, 1491.	3.3	2
16	High performance of InGaN light-emitting diodes by air-gap/GaN distributed Bragg reflectors. Optics Express, 2012, 20, 9999.	3.4	12
17	Chemically modified multilayer graphene with metal interlayer as an efficient current spreading electrode for InGaN/GaN blue light-emitting diodes. Journal Physics D: Applied Physics, 2012, 45, 145101.	2.8	35
18	The enhancement of the deflection effect in InGaN/GaN light-emitting diodes with an ellipsoidal air tunnel. Solid-State Electronics, 2012, 69, 14-17.	1.4	0

Nam Han

#	Article	IF	CITATIONS
19	Formation and optimization of undercut-microholes in InGaN light emitting diodes by using wet chemical etching. Thin Solid Films, 2012, 520, 4373-4377.	1.8	1
20	Self-Assembled Periodic Silica Nanosphere Arrays on Wet-Etched Patterned Sapphire Substrate for a High-Light-Extraction-Efficiency Light-Emitting Diode. IEEE Electron Device Letters, 2011, 32, 527-529.	3.9	9
21	Effect of embedded silica nanospheres on improving the performance of InGaN/GaN light-emitting diodes. Optics Express, 2011, 19, 2029.	3.4	14
22	Comparison of various surface textured layer in InGaN LEDs for high light extraction efficiency. Optics Express, 2011, 19, 3637.	3.4	39
23	Enhanced light emission in blue light-emitting diodes by multiple Mie scattering from embedded silica nanosphere stacking layers. Optics Express, 2011, 19, 23429.	3.4	11
24	Enhancement of light output power in GaN-based light-emitting diodes using indium tin oxide films with nanoporous structures. Thin Solid Films, 2011, 520, 437-441.	1.8	11
25	Enhanced light output power of GaN-based light emitting diodes with overcut sideholes formed by wet etching. Solid-State Electronics, 2010, 54, 575-578.	1.4	5
26	Selective Defect Blocking by Self-Assembled Silica Nanospheres for High Quality GaN Template. Electrochemical and Solid-State Letters, 2010, 13, H287.	2.2	8
27	Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes. Applied Physics Letters, 2009, 95, 221110.	3.3	21
28	Improvement of Light Output Power in InGaN/GaN Light-Emitting Diodes with a Nanotextured GaN Surface Using Indium Tin Oxide Nanospheres. Japanese Journal of Applied Physics, 2009, 48, 102104.	1.5	16
29	InGaN/GaN Light-Emitting Diode on Concave-Hexagonal-Patterned Sapphire Substrate. Japanese Journal of Applied Physics, 2009, 48, 110201.	1.5	6
30	InGaN/GaN Light-Emitting Diodes with Overcut-Shaped Periodic Microstructures Formed by Wet Etching Process. Electrochemical and Solid-State Letters, 2009, 12, H299.	2.2	3
31	Synthesis and optical properties of sword-like GaN nanorods clusters. Current Applied Physics, 2009, 9, S114-S117.	2.4	8