List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7669293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chemical Reviews, 2010, 110, 2620-2640.	23.0	1,927
2	Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine, 2008, 3, 703-717.	1.7	1,691
3	Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nature Medicine, 2011, 17, 1685-1691.	15.2	851
4	Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target?. Theranostics, 2014, 4, 81-89.	4.6	792
5	Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Medicine, 2009, 15, 104-109.	15.2	742
6	Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?. Bioconjugate Chemistry, 2016, 27, 2225-2238.	1.8	726
7	Nano-sized MRI contrast agents with dendrimer cores. Advanced Drug Delivery Reviews, 2005, 57, 2271-2286.	6.6	420
8	Rapid Cancer Detection by Topically Spraying a γ-Glutamyltranspeptidase–Activated Fluorescent Probe. Science Translational Medicine, 2011, 3, 110ra119.	5.8	404
9	Toxicity of Organic Fluorophores Used in Molecular Imaging: Literature Review. Molecular Imaging, 2009, 8, 7290.2009.00031.	0.7	358
10	Target-Cancer-Cell-Specific Activatable Fluorescence Imaging Probes: Rational Design and in Vivo Applications. Accounts of Chemical Research, 2011, 44, 83-90.	7.6	353
11	Sensitive Î ² -galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. Nature Communications, 2015, 6, 6463.	5.8	334
12	Simultaneous Multicolor Imaging of Five Different Lymphatic Basins Using Quantum Dots. Nano Letters, 2007, 7, 1711-1716.	4.5	320
13	<i>In vivo</i> Molecular Imaging of Cancer with a Quenching Near-Infrared Fluorescent Probe Using Conjugates of Monoclonal Antibodies and Indocyanine Green. Cancer Research, 2009, 69, 1268-1272.	0.4	306
14	Near-Infrared Photoimmunotherapy of Cancer. Accounts of Chemical Research, 2019, 52, 2332-2339.	7.6	286
15	Dendrimer-Based Nanoprobe for Dual Modality Magnetic Resonance and Fluorescence Imaging. Nano Letters, 2006, 6, 1459-1463.	4.5	259
16	Macromolecular MRI Contrast Agents with Small Dendrimers:Â Pharmacokinetic Differences between Sizes and Cores. Bioconjugate Chemistry, 2003, 14, 388-394.	1.8	254
17	Fluorescence-Guided Surgery. Frontiers in Oncology, 2017, 7, 314.	1.3	249
18	Markedly Enhanced Permeability and Retention Effects Induced by Photo-immunotherapy of Tumors.	7.3	237

#	Article	IF	CITATIONS
19	Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chemical Society Reviews, 2011, 40, 4626.	18.7	198
20	Multimodal Nanoprobes for Radionuclide and Five-Color Near-Infrared Optical Lymphatic Imaging. ACS Nano, 2007, 1, 258-264.	7.3	183
21	Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget, 2017, 8, 10425-10436.	0.8	179
22	Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Central Science, 2018, 4, 1559-1569.	5.3	171
23	H-Type Dimer Formation of Fluorophores: A Mechanism for Activatable, <i>in Vivo</i> Optical Molecular Imaging. ACS Chemical Biology, 2009, 4, 535-546.	1.6	167
24	Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Science Translational Medicine, 2016, 8, 352ra110.	5.8	163
25	An Enzymatically Activated Fluorescence Probe for Targeted Tumor Imaging. Journal of the American Chemical Society, 2007, 129, 3918-3929.	6.6	161
26	Dendrimer-based Macromolecular MRI Contrast Agents: Characteristics and Application. Molecular Imaging, 2003, 2, 1-10.	0.7	160
27	Lymphatic Drainage Imaging of Breast Cancer in Mice by Micro-Magnetic Resonance Lymphangiography Using a Nano-Size Paramagnetic Contrast Agent. Journal of the National Cancer Institute, 2004, 96, 703-708.	3.0	149
28	Biologically Optimized Nanosized Molecules and Particles: More than Just Size. Bioconjugate Chemistry, 2011, 22, 993-1000.	1.8	149
29	Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncology, 2009, 5, 1501-1511.	1.1	148
30	Toxicity of organic fluorophores used in molecular imaging: literature review. Molecular Imaging, 2009, 8, 341-54.	0.7	148
31	3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magnetic Resonance in Medicine, 2001, 45, 454-460.	1.9	143
32	Macromolecular MRI contrast agents for imaging tumor angiogenesis. European Journal of Radiology, 2006, 60, 353-366.	1.2	143
33	Dendrimer-Based Nanosized MRI Contrast Agents. Current Pharmaceutical Biotechnology, 2004, 5, 539-549.	0.9	143
34	Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: Comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. Journal of Controlled Release, 2006, 111, 343-351.	4.8	142
35	Nearâ€IR Lightâ€Mediated Cleavage of Antibody–Drug Conjugates Using Cyanine Photocages. Angewandte Chemie - International Edition, 2015, 54, 13635-13638.	7.2	140
36	A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. Journal of Magnetic Resonance Imaging, 2007, 25, 866-871.	1.9	136

#	Article	IF	CITATIONS
37	Near-infrared Theranostic Photoimmunotherapy (PIT): Repeated Exposure of Light Enhances the Effect of Immunoconjugate. Bioconjugate Chemistry, 2012, 23, 604-609.	1.8	136
38	Imaging of the lymphatic system: new horizons. Contrast Media and Molecular Imaging, 2006, 1, 230-245.	0.4	128
39	Dendrimer-Based Contrast Agents for Molecular Imaging. Current Topics in Medicinal Chemistry, 2008, 8, 1180-1186.	1.0	128
40	Targeted, Activatable, In Vivo Fluorescence Imaging of Prostate-Specific Membrane Antigen (PSMA) Positive Tumors Using the Quenched Humanized J591 Antibody–Indocyanine Green (ICG) Conjugate. Bioconjugate Chemistry, 2011, 22, 1700-1705.	1.8	128
41	Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magnetic Resonance in Medicine, 2001, 46, 1169-1173.	1.9	127
42	<i>In Vivo</i> Activation of Duocarmycin–Antibody Conjugates by Near-Infrared Light. ACS Central Science, 2017, 3, 329-337.	5.3	125
43	Preparation and Preliminary Evaluation of a Biotin-Targeted, Lectin-Targeted Dendrimer-Based Probe for Dual-Modality Magnetic Resonance and Fluorescence Imaging. Bioconjugate Chemistry, 2007, 18, 1474-1482.	1.8	119
44	Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Research and Treatment, 2007, 103, 23-28.	1.1	118
45	Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magnetic Resonance in Medicine, 2001, 46, 781-788.	1.9	116
46	Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 1001-1008.	1.7	116
47	In vivo multiple color lymphatic imaging using upconverting nanocrystals. Journal of Materials Chemistry, 2009, 19, 6481.	6.7	112
48	<i>In vivo</i> Diagnosis of Epidermal Growth Factor Receptor Expression using Molecular Imaging with a Cocktail of Optically Labeled Monoclonal Antibodies. Clinical Cancer Research, 2007, 13, 6639-6648.	3.2	110
49	Evaluation of the in Vivo Biodistribution of Indium-111 and Yttrium-88 Labeled Dendrimer-1B4M-DTPA and Its Conjugation with Anti-Tac Monoclonal Antibody. Bioconjugate Chemistry, 1999, 10, 103-111.	1.8	109
50	Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magnetic Resonance in Medicine, 2003, 50, 758-766.	1.9	109
51	Increased (18)F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation. Journal of Nuclear Medicine, 2002, 43, 658-63.	2.8	109
52	Avidin-dendrimer-(1B4M-Gd)254:  A Tumor-Targeting Therapeutic Agent for Gadolinium Neutron Capture Therapy of Intraperitoneal Disseminated Tumor Which Can Be Monitored by MRI. Bioconjugate Chemistry, 2001, 12, 587-593.	1.8	106
53	A Target Cell–Specific Activatable Fluorescence Probe for In vivo Molecular Imaging of Cancer Based on a Self-Quenched Avidin-Rhodamine Conjugate. Cancer Research, 2007, 67, 2791-2799.	0.4	105
54	Near infrared fluorescenceâ€guided realâ€ŧime endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. International Journal of Cancer, 2011, 129, 1671-1677.	2.3	102

#	Article	IF	CITATIONS
55	Influence of dendrimer generation and polyethylene glycol length on the biodistribution of PEGylated dendrimers. International Journal of Pharmaceutics, 2010, 383, 293-296.	2.6	99
56	Host Immunity Following Near-Infrared Photoimmunotherapy Is Enhanced with PD-1 Checkpoint Blockade to Eradicate Established Antigenic Tumors. Cancer Immunology Research, 2019, 7, 401-413.	1.6	99
57	Fluorophoreâ^'Quencher Based Activatable Targeted Optical Probes for Detecting <i>in Vivo</i> Cancer Metastases. Molecular Pharmaceutics, 2009, 6, 386-395.	2.3	98
58	Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. European Journal of Nuclear Medicine and Molecular Imaging, 2000, 27, 1334-1339.	2.2	97
59	<i>In vivo</i> target-specific activatable near-infrared optical labeling of humanized monoclonal antibodies. Molecular Cancer Therapeutics, 2009, 8, 232-239.	1.9	95
60	Photoimmunotherapy: Comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor. Molecular Oncology, 2014, 8, 620-632.	2.1	95
61	In Vivo Molecular Imaging to Diagnose and Subtype Tumors through Receptor-Targeted Optically Labeled Monoclonal Antibodies. Neoplasia, 2007, 9, 1021-1029.	2.3	94
62	Micro-magnetic resonance lymphangiography in mice using a novel dendrimer-based magnetic resonance imaging contrast agent. Cancer Research, 2003, 63, 271-6.	0.4	93
63	Dual-Modality Molecular Imaging Using Antibodies Labeled with Activatable Fluorescence and a Radionuclide for Specific and Quantitative Targeted Cancer Detection. Bioconjugate Chemistry, 2009, 20, 2177-2184.	1.8	92
64	Rapid intraoperative visualization of breast lesions with γ-glutamyl hydroxymethyl rhodamine green. Scientific Reports, 2015, 5, 12080.	1.6	89
65	Renal tubular damage detected by dynamic micro-MRI with a dendrimer-based magnetic resonance contrast agent. Kidney International, 2002, 61, 1980-1985.	2.6	87
66	Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: Reference to pharmacokinetic properties of dendrimer-based MR contrast agents. Journal of Magnetic Resonance Imaging, 2001, 14, 705-713.	1.9	86
67	Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer, 2012, 12, 345.	1.1	86
68	Super enhanced permeability and retention (SUPR) effects in tumors following near infrared photoimmunotherapy. Nanoscale, 2016, 8, 12504-12509.	2.8	86
69	Near Infrared Photoimmunotherapy in the Treatment of Pleural Disseminated NSCLC: Preclinical Experience. Theranostics, 2015, 5, 698-709.	4.6	81
70	Near Infrared Photoimmunotherapy in the Treatment of Disseminated Peritoneal Ovarian Cancer. Molecular Cancer Therapeutics, 2015, 14, 141-150.	1.9	81
71	Application of a Macromolecular Contrast Agent for Detection of Alterations of Tumor Vessel Permeability Induced by Radiation. Clinical Cancer Research, 2004, 10, 7712-7720.	3.2	80
72	Novel liver macromolecular MR contrast agent with a polypropylenimine diaminobutyl dendrimer core: Comparison to the vascular MR contrast agent with the polyamidoamine dendrimer core. Magnetic Resonance in Medicine, 2001, 46, 795-802.	1.9	79

#	Article	IF	CITATIONS
73	Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity. International Immunology, 2021, 33, 7-15.	1.8	79
74	Dendrimers in medical nanotechnology. IEEE Engineering in Medicine and Biology Magazine, 2009, 28, 12-22.	1.1	78
75	Comparison of the Macromolecular MR Contrast Agents with Ethylenediamine-Core versus Ammonia-Core Generation-6 Polyamidoamine Dendrimer. Bioconjugate Chemistry, 2001, 12, 100-107.	1.8	77
76	Real-time Monitoring of <i>In Vivo</i> Acute Necrotic Cancer Cell Death Induced by Near Infrared Photoimmunotherapy Using Fluorescence Lifetime Imaging. Cancer Research, 2012, 72, 4622-4628.	0.4	77
77	In Vivo Real-Time, Multicolor, Quantum Dot Lymphatic Imaging. Journal of Investigative Dermatology, 2009, 129, 2818-2822.	0.3	76
78	Spectral Fluorescence Molecular Imaging of Lung Metastases Targeting HER2/neu. Clinical Cancer Research, 2007, 13, 2936-2945.	3.2	74
79	Improving the Efficacy of Photoimmunotherapy (PIT) using a Cocktail of Antibody Conjugates in a Multiple Antigen Tumor Model. Theranostics, 2013, 3, 357-365.	4.6	74
80	Polyamine dendrimer-based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. Journal of Magnetic Resonance Imaging, 2004, 20, 512-518.	1.9	72
81	Determination of Optimal Rhodamine Fluorophore for <i>in Vivo</i> Optical Imaging. Bioconjugate Chemistry, 2008, 19, 1735-1742.	1.8	72
82	Multiplexed imaging in cancer diagnosis: applications and future advances. Lancet Oncology, The, 2010, 11, 589-595.	5.1	72
83	Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies. Theranostics, 2016, 6, 862-874.	4.6	71
84	Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen. PLoS ONE, 2015, 10, e0136829.	1.1	69
85	Near-Infrared Photoimmunotherapy Targeting Prostate Cancer with Prostate-Specific Membrane Antigen (PSMA) Antibody. Molecular Cancer Research, 2017, 15, 1153-1162.	1.5	69
86	Cancer Drug Delivery: Considerations in the Rational Design of Nanosized Bioconjugates. Bioconjugate Chemistry, 2014, 25, 2093-2100.	1.8	68
87	Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget, 2017, 8, 8807-8817.	0.8	68
88	Photoimmunotherapy Targeting Prostate-Specific Membrane Antigen: Are Antibody Fragments as Effective as Antibodies?. Journal of Nuclear Medicine, 2015, 56, 140-144.	2.8	66
89	Multiplexing with Multispectral Imaging: From Mice to Microscopy. ILAR Journal, 2008, 49, 78-88.	1.8	65
90	Molecular probes for the in vivo imaging of cancer. Molecular BioSystems, 2009, 5, 1279.	2.9	65

#	Article	IF	CITATIONS
91	<i>In vivo</i> molecular imaging using nanomaterials: General <i>in vivo</i> characteristics of nano-sized reagents and applications for cancer diagnosis (Review). Molecular Membrane Biology, 2010, 27, 274-285.	2.0	65
92	Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model. PLoS ONE, 2014, 9, e113276.	1.1	65
93	Phototheranostics of CD44-positive cell populations in triple negative breast cancer. Scientific Reports, 2016, 6, 27871.	1.6	64
94	Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti–CD44-Based NIR-PIT. Molecular Cancer Research, 2017, 15, 1667-1677.	1.5	64
95	Near infrared photoimmunotherapy for lung metastases. Cancer Letters, 2015, 365, 112-121.	3.2	62
96	High sensitivity detection of cancer in vivo using a dual-controlled activation fluorescent imaging probe based on H-dimer formation and pH activation. Molecular BioSystems, 2010, 6, 888.	2.9	61
97	The Effect of Photoimmunotherapy Followed by Liposomal Daunorubicin in a Mixed Tumor Model: A Demonstration of the Super-Enhanced Permeability and Retention Effect after Photoimmunotherapy. Molecular Cancer Therapeutics, 2014, 13, 426-432.	1.9	61
98	In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores. Breast Cancer Research, 2012, 14, R61.	2.2	60
99	Galactosyl Human Serum Albumin-NMP1 Conjugate: A Near Infrared (NIR)-Activatable Fluorescence Imaging Agent to Detect Peritoneal Ovarian Cancer Metastases. Bioconjugate Chemistry, 2012, 23, 1671-1679.	1.8	60
100	In Vivo Spectral Fluorescence Imaging of Submillimeter Peritoneal Cancer Implants Using a Lectin-Targeted Optical Agent. Neoplasia, 2006, 8, 607-IN2.	2.3	59
101	Toward Improved Syntheses of Dendrimer-Based Magnetic Resonance Imaging Contrast Agents:  New Bifunctional Diethylenetriaminepentaacetic Acid Ligands and Nonaqueous Conjugation Chemistry. Journal of Medicinal Chemistry, 2007, 50, 3185-3193.	2.9	59
102	Glypican-3 Targeted Human Heavy Chain Antibody as a Drug Carrier for Hepatocellular Carcinoma Therapy. Molecular Pharmaceutics, 2015, 12, 2151-2157.	2.3	59
103	Epidermal Growth Factor Receptor (EGFR)-targeted Photoimmunotherapy (PIT) for the Treatment of EGFR-expressing Bladder Cancer. Molecular Cancer Therapeutics, 2017, 16, 2201-2214.	1.9	59
104	Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine, 2009, 4, 411-419.	1.7	57
105	Role of Fluorophore Charge on the In Vivo Optical Imaging Properties of Near-Infrared Cyanine Dye/Monoclonal Antibody Conjugates. Bioconjugate Chemistry, 2016, 27, 404-413.	1.8	57
106	Targeting Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) Expressing Bladder Cancer Using Combination Photoimmunotherapy (PIT). Scientific Reports, 2019, 9, 2084.	1.6	57
107	Multicolor <i>inÂvivo</i> targeted imaging to guide realâ€ŧime surgery of HER2â€positive micrometastases in a twoâ€ŧumor coincident model of ovarian cancer. Cancer Science, 2009, 100, 1099-1104.	1.7	56
108	Near Infra-Red Photoimmunotherapy with Anti-CEA-IR700 Results in Extensive Tumor Lysis and a Significant Decrease in Tumor Burden in Orthotopic Mouse Models of Pancreatic Cancer. PLoS ONE, 2015, 10, e0121989.	1.1	56

#	Article	IF	CITATIONS
109	Dendrimer-enhanced MRI as a diagnostic and prognostic biomarker of sepsis-induced acute renal failure in aged mice. Kidney International, 2005, 67, 2159-2167.	2.6	55
110	Activatable Fluorescent Molecular Imaging of Peritoneal Metastases following Pretargeting with a Biotinylated Monoclonal Antibody. Cancer Research, 2007, 67, 3809-3817.	0.4	54
111	A Near-Infrared, Wavelength-Shiftable, Turn-on Fluorescent Probe for the Detection and Imaging of Cancer Tumor Cells. ACS Chemical Biology, 2017, 12, 1121-1132.	1.6	54
112	Activatable Optical Imaging with a Silica-Rhodamine Based Near Infrared (SiR700) Fluorophore: A comparison with cyanine based dyes. Bioconjugate Chemistry, 2011, 22, 2531-2538.	1.8	53
113	Short PEG-Linkers Improve the Performance of Targeted, Activatable Monoclonal Antibody-Indocyanine Green Optical Imaging Probes. Bioconjugate Chemistry, 2013, 24, 811-816.	1.8	53
114	Photoimmunotherapy of hepatocellular carcinoma-targeting Glypican-3 combined with nanosized albumin-bound paclitaxel. Nanomedicine, 2015, 10, 1139-1147.	1.7	53
115	Detection of Lymph Node Involvement in Hematologic Malignancies Using Micromagnetic Resonance Lymphangiography with a Gadolinum-Labeled Dendrimer Nanoparticle. Neoplasia, 2005, 7, 984-991.	2.3	52
116	A Comparison of the Emission Efficiency of Four Common Green Fluorescence Dyes after Internalization into Cancer Cells. Bioconjugate Chemistry, 2006, 17, 1426-1431.	1.8	51
117	Nanoparticles in sentinel lymph node mapping. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 610-623.	3.3	51
118	Norcyanine-Carbamates Are Versatile Near-Infrared Fluorogenic Probes. Journal of the American Chemical Society, 2021, 143, 5674-5679.	6.6	51
119	Targeted optical imaging of cancer cells using lectin-binding BODIPY conjugated avidin. Biochemical and Biophysical Research Communications, 2006, 348, 807-813.	1.0	49
120	Gadolinium MRI Contrast Agents Based on Triazine Dendrimers: Relaxivity and In Vivo Pharmacokinetics. Bioconjugate Chemistry, 2012, 23, 2291-2299.	1.8	49
121	Two-Color Lymphatic Mapping Using Ig-Conjugated Near Infrared Optical Probes. Journal of Investigative Dermatology, 2007, 127, 2351-2356.	0.3	48
122	Photoimmunotherapy for cancer-associated fibroblasts targeting fibroblast activation protein in human esophageal squamous cell carcinoma. Cancer Biology and Therapy, 2019, 20, 1234-1248.	1.5	48
123	Combined CD44- and CD25-Targeted Near-Infrared Photoimmunotherapy Selectively Kills Cancer and Regulatory T Cells in Syngeneic Mouse Cancer Models. Cancer Immunology Research, 2020, 8, 345-355.	1.6	48
124	Fibroblast activation protein targeted near infrared photoimmunotherapy (NIR PIT) overcomes therapeutic resistance in human esophageal cancer. Scientific Reports, 2021, 11, 1693.	1.6	48
125	Near Infrared Photoimmunotherapy; A Review of Targets for Cancer Therapy. Cancers, 2021, 13, 2535.	1.7	47
126	The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity. BMC Cancer, 2014, 14, 389.	1.1	46

8

#	Article	IF	CITATIONS
127	Near infrared photoimmunotherapy of Bâ€cell lymphoma. Molecular Oncology, 2016, 10, 1404-1414.	2.1	46
128	Activatable fluorescent probes in fluorescence-guided surgery: Practical considerations. Bioorganic and Medicinal Chemistry, 2018, 26, 925-930.	1.4	46
129	3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent. Magnetic Resonance in Medicine, 2001, 46, 579-585.	1.9	45
130	Near-Infrared Photoimmunotherapy: Photoactivatable Antibody–Drug Conjugates (ADCs). Bioconjugate Chemistry, 2020, 31, 28-36.	1.8	45
131	Gadolinium-labeled dendrimers as biometric nanoprobes to detect vascular permeability. Journal of Materials Chemistry, 2003, 13, 1523.	6.7	44
132	Near infrared photoimmunotherapy with an anti-mesothelin antibody. Oncotarget, 2016, 7, 23361-23369.	0.8	44
133	Real-time optical imaging using quantum dot and related nanocrystals. Nanomedicine, 2010, 5, 765-776.	1.7	42
134	Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy. Oncotarget, 2016, 7, 14324-14335.	0.8	42
135	Novel intravascular macromolecular MRI contrast agent with generation-4 polyamidoamine dendrimer core: Accelerated renal excretion with coinjection of lysine. Magnetic Resonance in Medicine, 2001, 46, 457-464.	1.9	41
136	New Approaches to Lymphatic Imaging. Lymphatic Research and Biology, 2009, 7, 205-214.	0.5	41
137	New Nanosized Biocompatible MR Contrast Agents Based on Lysine-Dendri-Graft Macromolecules. Bioconjugate Chemistry, 2010, 21, 955-960.	1.8	41
138	Activatable Organic Near-Infrared Fluorescent Probes Based on a Bacteriochlorin Platform: Synthesis and Multicolor <i>in Vivo</i> Imaging with a Single Excitation. Bioconjugate Chemistry, 2014, 25, 362-369.	1.8	41
139	Impact of C4â€2- <i>O</i> -Alkyl Linker on <i>in Vivo</i> Pharmacokinetics of Near-Infrared Cyanine/Monoclonal Antibody Conjugates. Molecular Pharmaceutics, 2015, 12, 3303-3311.	2.3	41
140	Targeted Phototherapy for Malignant Pleural Mesothelioma: Near-Infrared Photoimmunotherapy Targeting Podoplanin. Cells, 2020, 9, 1019.	1.8	41
141	Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model. Oncotarget, 2015, 6, 19747-19758.	0.8	41
142	<i>In Vivo</i> Stable Tumor-Specific Painting in Various Colors Using Dehalogenase-Based Protein-Tag Fluorescent Ligands. Bioconjugate Chemistry, 2009, 20, 1367-1374.	1.8	40
143	Near Infrared Photoimmunotherapy with Combined Exposure of External and Interstitial Light Sources. Molecular Pharmaceutics, 2018, 15, 3634-3641.	2.3	40
144	Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers. Oncotarget, 2018, 9, 11159-11169.	0.8	40

#	Article	IF	CITATIONS
145	Hepatocyte targeting of 111In-labeled oligo-DNA with avidin or avidin–dendrimer complex. Journal of Controlled Release, 2004, 95, 133-141.	4.8	39
146	Targeted optical fluorescence imaging of human ovarian adenocarcinoma using a galactosyl serum albumin-conjugated fluorophore. Cancer Science, 2007, 98, 1727-1733.	1.7	39
147	Magnetic resonance lymphangiography with a nano-sized gadolinium-labeled dendrimer in small and large animal models. Nanomedicine, 2010, 5, 1183-1191.	1.7	39
148	Dendrimers as high relaxivity <scp>MR</scp> contrast agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 155-162.	3.3	39
149	Monoclonal antibody-based optical molecular imaging probes; considerations and caveats in chemistry, biology and pharmacology. Current Opinion in Chemical Biology, 2016, 33, 32-38.	2.8	39
150	A Self-Quenched Galactosamine-Serum Albumin-RhodamineX Conjugate: A "Smart―Fluorescent Molecular Imaging Probe Synthesized with Clinically Applicable Material for Detecting Peritoneal Ovarian Cancer Metastases. Clinical Cancer Research, 2007, 13, 6335-6343.	3.2	37
151	Endoscopic near infrared photoimmunotherapy using a fiber optic diffuser for peritoneal dissemination of gastric cancer. Cancer Science, 2018, 109, 1902-1908.	1.7	37
152	D-galactose receptor-targeted in vivo spectral fluorescence imaging of peritoneal metastasis using galactosamin-conjugated serum albumin-rhodamine green. Journal of Biomedical Optics, 2007, 12, 051501.	1.4	36
153	Lymphatic dysfunction in transgenic mice expressing KSHV k-cyclin under the control of the VEGFR-3 promoter. Blood, 2005, 105, 2356-2363.	0.6	35
154	Minibody-Indocyanine Green Based Activatable Optical Imaging Probes: The Role of Short Polyethylene Glycol Linkers. ACS Medicinal Chemistry Letters, 2014, 5, 411-415.	1.3	35
155	Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates. Molecular BioSystems, 2016, 12, 3046-3056.	2.9	35
156	The Effect of Antibody Fragments on CD25 Targeted Regulatory T Cell Near-Infrared Photoimmunotherapy. Bioconjugate Chemistry, 2019, 30, 2624-2633.	1.8	35
157	Dendrimer-based Macromolecular MRI Contrast Agents: Characteristics and Application. Molecular Imaging, 2003, 2, 153535002003031.	0.7	34
158	Selective cell elimination in vitro and in vivo from tissues and tumors using antibodies conjugated with a near infrared phthalocyanine. RSC Advances, 2015, 5, 25105-25114.	1.7	34
159	Molecular targeted photoimmunotherapy for HER2-positive human gastric cancer in combination with chemotherapy results in improved treatment outcomes through different cytotoxic mechanisms. BMC Cancer, 2016, 16, 37.	1.1	34
160	Production of Multiple Growth Factors by a Newly Established Human Thyroid Carcinoma Cell Line. Japanese Journal of Cancer Research, 1992, 83, 153-158.	1.7	33
161	Photoimmunotherapy targeting biliaryâ€pancreatic cancer with humanized antiâ€TROP2 antibody. Cancer Medicine, 2019, 8, 7781-7792.	1.3	33
162	Selfâ€illuminating in vivo lymphatic imaging using a bioluminescence resonance energy transfer quantum dot nanoâ€particle. Contrast Media and Molecular Imaging, 2011, 6, 55-59.	0.4	32

#	Article	IF	CITATIONS
163	Combination photoimmunotherapy with monoclonal antibodies recognizing different epitopes of human epidermal growth factor receptor 2: an assessment of phototherapeutic effect based on fluorescence molecular imaging. Oncotarget, 2016, 7, 14143-14152.	0.8	32
164	Multi-Wavelength Fluorescence in Image-Guided Surgery, Clinical Feasibility and Future Perspectives. Molecular Imaging, 2020, 19, 153601212096233.	0.7	32
165	Near-infrared photoimmunotherapy: a comparison of light dosing schedules. Oncotarget, 2017, 8, 35069-35075.	0.8	32
166	Avoiding thermal injury during near-infrared photoimmunotherapy (NIR-PIT): the importance of NIR light power density. Oncotarget, 2017, 8, 113194-113201.	0.8	32
167	Activated Clearance of a Biotinylated Macromolecular MRI Contrast Agent from the Blood Pool Using an Avidin Chase. Bioconjugate Chemistry, 2003, 14, 1044-1047.	1.8	31
168	Preparation and long-term biodistribution studies of a PAMAM dendrimer G5–Gd-BnDOTA conjugate for lymphatic imaging. Nanomedicine, 2015, 10, 1423-1437.	1.7	31
169	Tumor-Specific Detection of an Optically Targeted Antibody Combined with a Quencher-Conjugated Neutravidin "Quencher-Chaser†A Dual "Quench and Chase†Strategy to Improve Target to Nontarget Ratios for Molecular Imaging of Cancer. Bioconjugate Chemistry, 2009, 20, 147-154.	1.8	30
170	Acute Cytotoxic Effects of Photoimmunotherapy Assessed by ¹⁸ F-FDG PET. Journal of Nuclear Medicine, 2013, 54, 770-775.	2.8	30
171	Near-Infrared Photochemoimmunotherapy by Photoactivatable Bifunctional Antibody–Drug Conjugates Targeting Human Epidermal Growth Factor Receptor 2 Positive Cancer. Bioconjugate Chemistry, 2017, 28, 1458-1469.	1.8	30
172	Near infrared photoimmunotherapy for cancers: A translational perspective. EBioMedicine, 2021, 70, 103501.	2.7	30
173	Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody. Oncotarget, 2018, 9, 19026-19038.	0.8	30
174	lmaging Acute Renal Failure with Polyamine Dendrimer-Based MRI Contrast Agents. Nephron Clinical Practice, 2006, 103, c45-c49.	2.3	29
175	Fluorescence lifetime imaging of activatable target specific molecular probes. Contrast Media and Molecular Imaging, 2010, 5, 1-8.	0.4	29
176	Design strategy for germanium-rhodamine based pH-activatable near-infrared fluorescence probes suitable for biological applications. Communications Chemistry, 2019, 2, .	2.0	29
177	Activatable Near-Infrared Fluorescence Imaging Using PEGylated Bacteriochlorin-Based Chlorin and BODIPY-Dyads as Probes for Detecting Cancer. Bioconjugate Chemistry, 2019, 30, 169-183.	1.8	29
178	Micro-MRI methods to detect renal cysts in mice. Kidney International, 2004, 65, 1511-1516.	2.6	27
179	Photoimmunotherapy lowers recurrence after pancreatic cancer surgery in orthotopic nude mouse models. Journal of Surgical Research, 2015, 197, 5-11.	0.8	27
180	Local Depletion of Immune Checkpoint Ligand CTLA4 Expressing Cells in Tumor Beds Enhances Antitumor Host Immunity. Advanced Therapeutics, 2021, 4, 2000269.	1.6	27

#	Article	IF	CITATIONS
181	Improved micro-distribution of antibody-photon absorber conjugates after initial near infrared photoimmunotherapy (NIR-PIT). Journal of Controlled Release, 2016, 232, 1-8.	4.8	26
182	Evaluation of Early Therapeutic Effects after Near-Infrared Photoimmunotherapy (NIR-PIT) Using Luciferase–Luciferin Photon-Counting and Fluorescence Imaging. Molecular Pharmaceutics, 2017, 14, 4628-4635.	2.3	26
183	Multi-targeted multi-color in vivo optical imaging in a model of disseminated peritoneal ovarian cancer. Journal of Biomedical Optics, 2009, 14, 014023.	1.4	25
184	Near Infrared Photoimmunotherapy in a Transgenic Mouse Model of Spontaneous Epidermal Growth Factor Receptor (EGFR)-expressing Lung Cancer. Molecular Cancer Therapeutics, 2017, 16, 408-414.	1.9	25
185	Near infrared photoimmunotherapy using a fiber optic diffuser for treating peritoneal gastric cancer dissemination. Gastric Cancer, 2019, 22, 463-472.	2.7	25
186	Interleukin-15 after Near-Infrared Photoimmunotherapy (NIR-PIT) Enhances T Cell Response against Syngeneic Mouse Tumors. Cancers, 2020, 12, 2575.	1.7	25
187	Viral transduction of the HER2-extracellular domain expands trastuzumab-based photoimmunotherapy for HER2-negative breast cancer cells. Breast Cancer Research and Treatment, 2015, 149, 597-605.	1.1	24
188	Molecularly Targeted Cancer Combination Therapy with Near-Infrared Photoimmunotherapy and Near-Infrared Photorelease with Duocarmycin–Antibody Conjugate. Molecular Cancer Therapeutics, 2018, 17, 661-670.	1.9	24
189	Cancer neovasculature-targeted near-infrared photoimmunotherapy (NIR-PIT) for gastric cancer: different mechanisms of phototoxicity compared to cell membrane-targeted NIR-PIT. Gastric Cancer, 2020, 23, 82-94.	2.7	24
190	Dynamic changes in the cell membrane on three dimensional low coherent quantitative phase microscopy (3D LC-QPM) after treatment with the near infrared photoimmunotherapy. Oncotarget, 2017, 8, 104295-104302.	0.8	24
191	Comparison of the Chase Effects of Avidin, Streptavidin, Neutravidin, and Avidin-Ferritin on a Radiolabeled Biotinylated Anti-tumor Monoclonal Antibody. Japanese Journal of Cancer Research, 1995, 86, 310-314.	1.7	23
192	Molecular imaging of tumor invasion and metastases: the role of MRI. NMR in Biomedicine, 2011, 24, 561-568.	1.6	23
193	Two-Step Synthesis of Galactosylated Human Serum Albumin as a Targeted Optical Imaging Agent for Peritoneal Carcinomatosis. Journal of Medicinal Chemistry, 2010, 53, 1579-1586.	2.9	23
194	Trastuzumab-Based Photoimmunotherapy Integrated with Viral HER2 Transduction Inhibits Peritoneally Disseminated HER2-Negative Cancer. Molecular Cancer Therapeutics, 2016, 15, 402-411.	1.9	23
195	Near-Infrared Photoimmunotherapy Combined with CTLA4 Checkpoint Blockade in Syngeneic Mouse Cancer Models. Vaccines, 2020, 8, 528.	2.1	23
196	Increased Immunogenicity of a Minimally Immunogenic Tumor after Cancer-Targeting Near Infrared Photoimmunotherapy. Cancers, 2020, 12, 3747.	1.7	23
197	Antimicrobial strategy for targeted elimination of different microbes, including bacterial, fungal and viral pathogens. Communications Biology, 2022, 5, .	2.0	23
198	Photoimmunotherapy Inhibits Tumor Recurrence After Surgical Resection on a Pancreatic Cancer Patient-Derived Orthotopic Xenograft (PDOX) Nude Mouse Model. Annals of Surgical Oncology, 2015, 22, 1469-1474.	0.7	22

#	Article	IF	CITATIONS
199	Rapid diagnosis of lymph node metastasis in breast cancer using a new fluorescent method with γ-glutamyl hydroxymethyl rhodamine green. Scientific Reports, 2016, 6, 27525.	1.6	22
200	Biodistribution and Excretion of Monosaccharideâ~Albumin Conjugates Measured with in Vivo Near-Infrared Fluorescence Imaging. Bioconjugate Chemistry, 2010, 21, 1925-1932.	1.8	21
201	Cerenkov Radiation–Induced Photoimmunotherapy with ¹⁸ F-FDG. Journal of Nuclear Medicine, 2017, 58, 1395-1400.	2.8	21
202	Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo. Journal of Controlled Release, 2017, 260, 154-163.	4.8	21
203	Near-infrared photoimmunotherapy targeting human-EGFR in a mouse tumor model simulating current and future clinical trials. EBioMedicine, 2021, 67, 103345.	2.7	21
204	Implantable wireless powered light emitting diode (LED) for near-infrared photoimmunotherapy: device development and experimental assessment <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2018, 9, 20048-20057.	0.8	21
205	3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo. Journal of Controlled Release, 2018, 279, 171-180.	4.8	20
206	Simultaneously Combined Cancer Cell- and CTLA4-Targeted NIR-PIT Causes a Synergistic Treatment Effect in Syngeneic Mouse Models. Molecular Cancer Therapeutics, 2021, 20, 2262-2273.	1.9	20
207	Rapid Depletion of Intratumoral Regulatory T Cells Induces Synchronized CD8 T- and NK-cell Activation and IFNÎ ³ -Dependent Tumor Vessel Regression. Cancer Research, 2021, 81, 3092-3104.	0.4	20
208	A topically-sprayable, activatable fluorescent and retaining probe, SPiDER-βGal for detecting cancer: Advantages of anchoring to cellular proteins after activation. Oncotarget, 2017, 8, 39512-39521.	0.8	20
209	MR and optical imaging of early micrometastases in lymph nodes: triple labeling with nanoâ€sized agents yielding distinct signals. Contrast Media and Molecular Imaging, 2012, 7, 247-253.	0.4	19
210	Near infrared photoimmunotherapy of cancer; possible clinical applications. Nanophotonics, 2021, 10, 3135-3151.	2.9	19
211	MR imaging biomarkers for evaluating therapeutic effects shortly after near infrared photoimmunotherapy. Oncotarget, 2016, 7, 17254-17264.	0.8	19
212	Cyanine Phototruncation Enables Spatiotemporal Cell Labeling. Journal of the American Chemical Society, 2022, 144, 11075-11080.	6.6	19
213	Semiquantitative assessment of the microdistribution of fluorescenceâ€labeled monoclonal antibody in small peritoneal disseminations of ovarian cancer. Cancer Science, 2010, 101, 820-825.	1.7	18
214	Medical Uses of Fluorescence Imaging: Bringing Disease to Light. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1140-1146.	1.9	18
215	Activatable fluorescent cys-diabody conjugated with indocyanine green derivative: consideration of fluorescent catabolite kinetics on molecular imaging. Journal of Biomedical Optics, 2013, 18, 101304.	1.4	18
216	Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography. Journal of Biomedical Optics, 2014, 19, 098004.	1.4	18

#	Article	IF	CITATIONS
217	A Portable Fluorescence Camera for Testing Surgical Specimens in the Operating Room: Description and Early Evaluation. Molecular Imaging and Biology, 2011, 13, 862-867.	1.3	17
218	<i>In vivo</i> realâ€time lymphatic draining using quantumâ€dot optical imaging in mice. Contrast Media and Molecular Imaging, 2013, 8, 96-100.	0.4	17
219	Magnetic Resonance Sentinel Lymph Node Imaging of the Prostate with Gadofosveset Trisodium–Albumin. Academic Radiology, 2015, 22, 646-652.	1.3	17
220	Enhanced nanodrug delivery in tumors after near-infrared photoimmunotherapy. Nanophotonics, 2019, 8, 1673-1688.	2.9	17
221	Near-infrared photoimmunotherapy with galactosyl serum albumin in a model of diffuse peritoneal disseminated ovarian cancer. Oncotarget, 2016, 7, 79408-79416.	0.8	17
222	Small numbers of residual tumor cells at the site of primary inoculation are critical for anti-tumor immunity following challenge at a secondary location. Cancer Immunology, Immunotherapy, 2007, 56, 1119-1131.	2.0	16
223	Electron Donors Rather Than Reactive Oxygen Species Needed for Therapeutic Photochemical Reaction of Near-Infrared Photoimmunotherapy. ACS Pharmacology and Translational Science, 2021, 4, 1689-1701.	2.5	16
224	Polysplenia associated with semiannular pancreas. European Radiology, 2001, 11, 1639-1641.	2.3	15
225	<i>In Vivo</i> Longitudinal Imaging of Experimental Human Papillomavirus Infection in Mice with a Multicolor Fluorescence Mini-Endoscopy System. Cancer Prevention Research, 2011, 4, 767-773.	0.7	15
226	Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy. Contrast Media and Molecular Imaging, 2014, 9, 276-282.	0.4	15
227	Fluorescence Imaging of Tumor-Accumulating Antibody-IR700 Conjugates Prior to Near-Infrared Photoimmunotherapy (NIR-PIT) Using a Commercially Available Camera Designed for Indocyanine Green. Molecular Pharmaceutics, 2021, 18, 1238-1246.	2.3	15
228	Endoscopic nearâ€infrared photoimmunotherapy in an orthotopic head and neck cancer model. Cancer Science, 2021, 112, 3041-3049.	1.7	15
229	Dynamic fluorescent imaging with the activatable probe, Î ³ -glutamyl hydroxymethyl rhodamine green in the detection of peritoneal cancer metastases: Overcoming the problem of dilution when using a sprayable optical probe. Oncotarget, 2016, 7, 51124-51137.	0.8	15
230	Scintigraphic detection of neural-cell-derived small-cell lung cancer using glioma-specific antibody. Journal of Cancer Research and Clinical Oncology, 1994, 120, 259-262.	1.2	14
231	Fluorescence Imaging of Tumors with "Smart―pH-Activatable Targeted Probes. Methods in Molecular Biology, 2009, 574, 47-62.	0.4	14
232	MR lymphangiography using dendrimer-based contrast agents: A comparison at 1.5T and 3.0T. Magnetic Resonance in Medicine, 2007, 57, 431-436.	1.9	13
233	Magnetic Resonance Lymphography of the Thoracic Duct after Interstitial Injection of Gadofosveset Trisodium: A Pilot Dosing Study in a Porcine Model. Lymphatic Research and Biology, 2014, 12, 32-36.	0.5	13
234	Immunotoxin SS1P is rapidly removed by proximal tubule cells of kidney, whose damage contributes to albumin loss in urine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6086-6091.	3.3	13

#	Article	IF	CITATIONS
235	Diagnostic imaging in nearâ€infrared photoimmunotherapy using a commercially available camera for indocyanine green. Cancer Science, 2021, 112, 1326-1330.	1.7	13
236	CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model. Oncolmmunology, 2022, 11, 2019922.	2.1	13
237	Two-color in vivo dynamic contrast-enhanced pharmacokinetic imaging. Journal of Biomedical Optics, 2007, 12, 034016.	1.4	12
238	Polychromatic in vivo imaging of multiple targets using visible and near infrared light. Advanced Drug Delivery Reviews, 2013, 65, 1112-1119.	6.6	12
239	Nearâ€infrared photoimmunotherapy through bone. Cancer Science, 2019, 110, 3689-3694.	1.7	12
240	Conjugation Ratio, Light Dose, and pH Affect the Stability of Panitumumab–IR700 for Near-Infrared Photoimmunotherapy. ACS Medicinal Chemistry Letters, 2020, 11, 1598-1604.	1.3	12
241	A near-infrared light-mediated cleavable linker strategy using the heptamethine cyanine chromophore. Methods in Enzymology, 2020, 641, 245-275.	0.4	12
242	Optimizing quantitative <i>in vivo</i> fluorescence imaging with nearâ€infrared quantum dots. Contrast Media and Molecular Imaging, 2011, 6, 148-152.	0.4	11
243	Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy. Biomedical Optics Express, 2016, 7, 2738.	1.5	11
244	Real-time IR700 Fluorescence Imaging During Near-infrared Photoimmunotherapy Using a Clinically-approved Camera for Indocyanine Green. Cancer Diagnosis & Prognosis, 2021, 1, 29-34.	0.3	11
245	The Use of Fluorescent Proteins for Developing Cancer-Specific Target Imaging Probes. Methods in Molecular Biology, 2012, 872, 191-204.	0.4	10
246	Characteristics of ovarian cancer detection by a near-infrared fluorescent probe activated by human NAD(P)H: quinone oxidoreductase isozyme 1 (hNQO1). Oncotarget, 2017, 8, 61181-61192.	0.8	10
247	MR lymphangiography with intradermal gadofosveset and human serum albumin in mice and primates. Journal of Magnetic Resonance Imaging, 2014, 40, 691-697.	1.9	9
248	Surgical tissue handling methods to optimize <i>ex vivo</i> fluorescence with the activatable optical probe γâ€glutamyl hydroxymethyl rhodamine green. Contrast Media and Molecular Imaging, 2016, 11, 572-578.	0.4	9
249	Selection of antibody and light exposure regimens alters therapeutic effects of EGFR-targeted near-infrared photoimmunotherapy. Cancer Immunology, Immunotherapy, 2022, 71, 1877-1887.	2.0	9
250	Near-Infrared Photoimmunotherapy (NIR-PIT) in Urologic Cancers. Cancers, 2022, 14, 2996.	1.7	9
251	Intercellular adhesion moleculeâ€1â€targeted nearâ€infrared photoimmunotherapy of tripleâ€negative breast cancer. Cancer Science, 2022, 113, 3180-3192.	1.7	9
252	Dynamic Micro-MRI of Liver Micrometastasis with a Novel Liver Macromolecular MR Contrast Agent DAB-Am64-(1B4M-Gd)64. Academic Radiology, 2002, 9, S452-S454.	1.3	6

#	Article	IF	CITATIONS
253	Spectral near-infrared fluorescence imaging of curved surfaces using projection reconstruction algorithms. Contrast Media and Molecular Imaging, 2007, 2, 82-87.	0.4	6
254	Real-Time Fluorescence-Enhanced Imaging as an Aid to Surgery in Ovarian Cancer. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1602-1609.	1.9	6
255	Opening up new VISTAs: V-domain immunoglobulin suppressor of T cell activation (VISTA) targeted near-infrared photoimmunotherapy (NIR-PIT) for enhancing host immunity against cancers. Cancer Immunology, Immunotherapy, 2022, 71, 2869-2879.	2.0	6
256	Near-infrared photoimmunotherapy induced tumor cell death enhances tumor dendritic cell migration. Cancer Immunology, Immunotherapy, 2022, 71, 3099-3106.	2.0	6
257	Uptake of pentavalent technetium-99m dimercaptosuccinic acid in idiopathic synovial chondromatosis. Annals of Nuclear Medicine, 1995, 9, 153-155.	1.2	5
258	Inflammation-seeking scintigraphy with radiolabeled biotinylated polyclonal IgG followed by the injection of avidin chase. Nuclear Medicine and Biology, 1996, 23, 29-32.	0.3	5
259	Effect of Circulating Antigen on Immunoscintigraphy of Ovarian Cancer Patients Using Anti-CA125 Monoclonal Antibody. Japanese Journal of Cancer Research, 1996, 87, 655-661.	1.7	5
260	Fluorescenceâ€lifetime molecular imaging can detect invisible peritoneal ovarian tumors in bloody ascites. Cancer Science, 2014, 105, 308-314.	1.7	5
261	Quantitative and specific molecular imaging of cancer with labeled engineered monoclonal antibody fragments. Therapeutic Delivery, 2011, 2, 345-358.	1.2	4
262	Monoclonal antibody–fluorescent probe conjugates for <i>in vivo</i> target-specific cancer imaging: toward clinical translation. Therapeutic Delivery, 2013, 4, 523-525.	1.2	4
263	Real-Time Fluorescence Imaging Using Indocyanine Green to Assess Therapeutic Effects of Near-Infrared Photoimmunotherapy in Tumor Model Mice. Molecular Imaging, 2020, 19, 153601212093496.	0.7	4
264	Wound healing after excision of subcutaneous tumors treated with nearâ€infrared photoimmunotherapy. Cancer Medicine, 2020, 9, 5932-5939.	1.3	4
265	Effect of Short PEG on Near-Infrared BODIPY-Based Activatable Optical Probes. ACS Omega, 2020, 5, 15657-15665.	1.6	4
266	PD-L1 near Infrared Photoimmunotherapy of Ovarian Cancer Model. Cancers, 2022, 14, 619.	1.7	4
267	Paraneoplastic syndromes associated with ovarian neoplasms. International Journal of Clinical Oncology, 2000, 5, 79-84.	1.0	3
268	Endoscopic molecular imaging of cancer. Future Oncology, 2013, 9, 1501-1513.	1.1	3
269	Near-Infrared Photoimmunotherapy for Cancers of the Gastrointestinal Tract. Digestion, 2021, 102, 65-72.	1.2	3
270	Quantitative analysis of vascular changes during photoimmunotherapy using speckle variance optical coherence tomography (SV-OCT). Biomedical Optics Express, 2021, 12, 1804.	1.5	3

#	Article	IF	CITATIONS
271	Expanding the application of cancer near-infrared photoimmunotherapy. EBioMedicine, 2021, 68, 103416.	2.7	3
272	Endoscopic Applications of Near-Infrared Photoimmunotherapy (NIR-PIT) in Cancers of the Digestive and Respiratory Tracts. Biomedicines, 2022, 10, 846.	1.4	3
273	Tumorâ€ŧargeted fluorescence labeling systems for cancer diagnosis and treatment. Cancer Science, 2022, 113, 1919-1929.	1.7	3
274	Activatable optical imaging probes with various fluorophore-quencher combinations. Proceedings of SPIE, 2009, , .	0.8	2
275	Future applications of and prospects for near-IR photoimmunotherapy: benefits and differences compared with photodynamic and photothermal therapy. Immunotherapy, 2021, 13, 1305-1307.	1.0	2
276	Current and new fluorescent probes for fluorescence-guided surgery. , 2020, , 75-114.		2
277	Near Infrared Photoimmunotherapy for Cancer. , 2019, , .		2
278	Pitfalls on sample preparation for ex vivo imaging of resected cancer tissue using enzyme-activatable fluorescent probes. Oncotarget, 2018, 9, 36039-36047.	0.8	2
279	Multi-excitation near infrared (NIR) spectral fluorescence imaging using organic fluorophores. Proceedings of SPIE, 2008, , .	0.8	1
280	Recipe for a new imaging biomarker: carefully combine target, reagent, and technology. Kidney International, 2012, 81, 129-131.	2.6	1
281	Response to Comment on "Rapid Cancer Detection by Topically Spraying a γ-Glutamyltranspeptidase–Activated Fluorescent Probe― Science Translational Medicine, 2012, 4, .	5.8	1
282	Lymphangiogenesis and Imaging of the Lymphatics in Cancer. Cancer Metastasis - Biology and Treatment, 2009, , 159-184.	0.1	1
283	Comparison of the Effectiveness of IgG Antibody versus F(ab′) ₂ Antibody Fragment in CTLA4-Targeted Near-Infrared Photoimmunotherapy. Molecular Pharmaceutics, 2022, 19, 3600-3611.	2.3	1
284	Fluorescence in vivo imaging of live tumor cells with pH-activatable targeted probes via receptor-mediated endocytosis. , 2009, , .		0
285	New technologies of cancer cell-specific molecular imaging and near infrared photoimmunotherapy. Drug Delivery System, 2014, 29, 274-284.	0.0	Ο
286	Near Infrared Photoimmunotherapy of Cancer. , 2021, , .		0
287	Activatable Fluorescence Probes for Targeted Molecular Imaging of Cancer. , 2008, , .		0
288	Near infrared photo-immunotherapy: A newly developed, target cell-specific cancer theranostic technology. , 2015, , .		0

#	Article	IF	CITATIONS
289	Concepts in Diagnostic Probe Design. , 2017, , 177-200.		0
290	Eliciting Host Immunity Selectively against Cancer Cells Treated with Silica-Phthalocyanine-Based Near Infrared Photoimmunotherapy. , 2017, , .		0
291	MR Lymphangiography Using Nano-Sized Paramagnetic Contrast Agents with Dendrimer Cores. , 2008, , 9-23.		0