Hans-Joachim Galla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7668656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stabilization of DPPC Lipid Bilayers in the Presence of Co-Solutes: Molecular Mechanisms and Interaction Patterns. Physical Chemistry Chemical Physics, 2021, 23, 22936-22946.	1.3	2
2	Efflux at the Blood-Brain Barrier Reduces the Cerebral Exposure to Ochratoxin A, Ochratoxin α, Citrinin and Dihydrocitrinone. Toxins, 2021, 13, 327.	1.5	9
3	Meet the IUPAB Councilor—Hans-Joachim Galla. Biophysical Reviews, 2021, 13, 831-833.	1.5	1
4	An Imidazoliumâ€Based Lipid Analogue as a Gene Transfer Agent. Chemistry - A European Journal, 2020, 26, 17176-17182.	1.7	12
5	Interaction of imidazolium-based lipids with phospholipid bilayer membranes of different complexity. Physical Chemistry Chemical Physics, 2020, 22, 9775-9788.	1.3	18
6	Effect of ectoine, hydroxyectoine and β-hydroxybutyrate on the temperature and pressure stability of phospholipid bilayer membranes of different complexity. Colloids and Surfaces B: Biointerfaces, 2019, 178, 404-411.	2.5	15
7	Effect of hyaluronic acid on phospholipid model membranes. Colloids and Surfaces B: Biointerfaces, 2019, 173, 327-334.	2.5	20
8	Cooperative binding promotes demand-driven recruitment of AnxA8 to cholesterol-containing membranes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 349-358.	1.2	16
9	Membrane interactions of ionic liquids and imidazolium salts. Biophysical Reviews, 2018, 10, 735-746.	1.5	38
10	Editorial of the "ionic liquids and biomolecules―special issue. Biophysical Reviews, 2018, 10, 687-690.	1.5	17
11	Dissipative Microgravimetry to Study the Binding Dynamics of the Phospholipid Binding Protein Annexin A2 to Solid-supported Lipid Bilayers Using a Quartz Resonator. Journal of Visualized Experiments, 2018, , .	0.2	3
12	Bridging of membrane surfaces by annexin A2. Scientific Reports, 2018, 8, 14662.	1.6	18
13	Addressable Cholesterol Analogs for Live Imaging of Cellular Membranes. Cell Chemical Biology, 2018, 25, 952-961.e12.	2.5	22
14	3D Molecular ToF-SIMS Imaging of Artificial Lipid Membranes Using a Discriminant Analysis-Based Algorithm. Langmuir, 2018, 34, 8750-8757.	1.6	5
15	Imidazolium Salts Mimicking the Structure of Natural Lipids Exploit Remarkable Properties Forming Lamellar Phases and Giant Vesicles. Langmuir, 2017, 33, 1333-1342.	1.6	54
16	The effects of gold nanoparticles functionalized with ß -amyloid specific peptides on an in vitro model of blood–brain barrier. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1645-1652.	1.7	64
17	Overview of the "lonic Liquids meet Biomolecules―session at the 19th international IUPAB and 11th EBSA congress. Biophysical Reviews, 2017, 9, 279-281.	1.5	8
18	Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials. Analytical and Bioanalytical Chemistry, 2017, 409, 6123-6131.	1.9	10

#	Article	IF	CITATIONS
19	Influence of the Headgroup of Azoliumâ€Based Lipids on Their Biophysical Properties and Cytotoxicity. Chemistry - A European Journal, 2017, 23, 5920-5924.	1.7	21
20	Comparison of cellular effects of starch-coated SPIONs and poly(lactic-co-glycolic acid) matrix nanoparticles on human monocytes. International Journal of Nanomedicine, 2016, Volume 11, 5221-5236.	3.3	23
21	Effects on and transfer across the blood-brain barrier in vitro—Comparison of organic and inorganic mercury species. BMC Pharmacology & Toxicology, 2016, 17, 63.	1.0	41
22	Blood-brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices. Cell and Tissue Research, 2016, 365, 233-245.	1.5	34
23	Imidazolium-Based Lipid Analogues and Their Interaction with Phosphatidylcholine Membranes. Langmuir, 2016, 32, 12579-12592.	1.6	50
24	An In Vitro Model of the Blood-brain Barrier Using Impedance Spectroscopy: A Focus on T Cell-endothelial Cell Interaction. Journal of Visualized Experiments, 2016, , .	0.2	9
25	A Remarkably Simple Class of Imidazoliumâ€Based Lipids and Their Biological Properties. Chemistry - A European Journal, 2015, 21, 15123-15126.	1.7	46
26	Blood-Brain Barrier Effects of the Fusarium Mycotoxins Deoxynivalenol, 3 Acetyldeoxynivalenol, and Moniliformin and Their Transfer to the Brain. PLoS ONE, 2015, 10, e0143640.	1.1	41
27	A Remarkably Simple Hybrid Surfactant–NHC Ligand, Its Gold omplex, and Application in Micellar Catalysis. Chemistry - A European Journal, 2015, 21, 12291-12294.	1.7	50
28	Anti-tumor activity and cytotoxicity inÂvitro of novel 4,5-dialkylimidazolium surfactants. Biochemical and Biophysical Research Communications, 2015, 467, 1033-1038.	1.0	39
29	Importance of phospholipid bilayer integrity in the analysis of protein–lipid interactions. Biochemical and Biophysical Research Communications, 2014, 453, 143-147.	1.0	5
30	Strategies to overcome the barrier: use of nanoparticles as carriers and modulators of barrier properties. Cell and Tissue Research, 2014, 355, 717-726.	1.5	35
31	Cooperative Binding of Annexin A2 to Cholesterol- and Phosphatidylinositol-4,5-Bisphosphate-Containing Bilayers. Biophysical Journal, 2014, 107, 2070-2081.	0.2	31
32	Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Research, 2014, 1550, 1-8.	1.1	106
33	Ultra structure analysis of cell–cell interactions between pericytes and neutrophils in vitro. Biochemical and Biophysical Research Communications, 2014, 445, 180-183.	1.0	5
34	Biophysical investigations of the structure and function of the tear fluid lipid layer and the effect of ectoine. Part A: Natural meibomian lipid films. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2708-2715.	1.4	13
35	Biophysical investigations of the structure and function of the tear fluid lipid layers and the effect of ectoine. Part B: Artificial lipid films. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2716-2727.	1.4	22
36	Polyacrylamide hydrogel encapsulated E. coli expressing metal-sensing green fluorescent protein as a potential tool for copper ion determination. EXCLI Journal, 2014, 13, 401-15.	0.5	3

HANS-JOACHIM GALLA

#	Article	IF	CITATIONS
37	Impedance-based cell monitoring: barrier properties and beyond. Fluids and Barriers of the CNS, 2013, 10, 5.	2.4	291
38	Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nature Communications, 2013, 4, 2123.	5.8	256
39	Influence of T-2 and HT-2 Toxin on the Blood-Brain Barrier In Vitro: New Experimental Hints for Neurotoxic Effects. PLoS ONE, 2013, 8, e60484.	1.1	65
40	Receptor-Mediated Delivery of Magnetic Nanoparticles across the Blood–Brain Barrier. ACS Nano, 2012, 6, 3304-3310.	7.3	272
41	High-Resolution Investigation of Nanoparticle Interaction with a Model Pulmonary Surfactant Monolayer. ACS Nano, 2012, 6, 1677-1687.	7.3	75
42	Permeability of ergot alkaloids across the bloodâ€brain barrier in vitro and influence on the barrier integrity. Molecular Nutrition and Food Research, 2012, 56, 475-485.	1.5	34
43	Methods to Assess Pericyte-Endothelial Cell Interactions in a Coculture Model. Methods in Molecular Biology, 2011, 686, 379-399.	0.4	18
44	Nanoparticle interaction with model lung surfactant monolayers. Journal of the Royal Society Interface, 2010, 7, S15-26.	1.5	108
45	Viral membrane penetration: lytic activity of a nodaviral fusion peptide. European Biophysics Journal, 2005, 34, 285-293.	1.2	9
46	Influence of Hydrocortisone on the Mechanical Properties of the Cerebral Endothelium In Vitro. Biophysical Journal, 2005, 89, 3904-3910.	0.2	46
47	Usefulness and limitation of primary cultured porcine choroid plexus epithelial cells as an in vitro model to study drug transport at the blood?CSF barrier. Advanced Drug Delivery Reviews, 2004, 56, 1859-1873.	6.6	27
48	Visualization of Chemical and Physical Properties of Calcium-Induced Domains in DPPC/DPPS Langmuirâ^'Blodgett Layers. Langmuir, 2001, 17, 2437-2445.	1.6	105
49	Analysis of Lung Surfactant Model Systems with Time-of-Flight Secondary Ion Mass Spectrometry. Biophysical Journal, 2000, 79, 357-369.	0.2	88
50	Formation of Three-Dimensional Protein-Lipid Aggregates in Monolayer Films Induced by Surfactant Protein B. Biophysical Journal, 2000, 79, 904-918.	0.2	128
51	Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood–brain barrier in vitro. Brain Research Protocols, 2000, 5, 248-256.	1.7	201
52	lmaging of Domain Structures in a One-Component Lipid Monolayer by Time-of-Flight Secondary Ion Mass Spectrometry. Langmuir, 2000, 16, 1481-1484.	1.6	48
53	An improved low-permeability in vitro-model of the blood–brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Research, 1999, 818, 65-71.	1.1	166
54	Evidence for multilayer formation of melittin on solid-supported phospholipid membranes by shear-wave resonator measurements. Chemistry and Physics of Lipids, 1998, 95, 95-104.	1.5	15

HANS-JOACHIM GALLA

#	Article	IF	CITATIONS
55	Hydrocortisone Reinforces the Blood–Brain Barrier Properties in a Serum Free Cell Culture System. Biochemical and Biophysical Research Communications, 1998, 244, 312-316.	1.0	233
56	A new astrocytic cell line which is able to induce a blood-brain barrier property in cultured brain capillary endothelial cells. Cytotechnology, 1997, 24, 11-17.	0.7	8
57	Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. Journal of Proteomics, 1996, 32, 151-170.	2.4	119
58	Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of membrane proteins and non-covalent complexes. Journal of Mass Spectrometry, 1995, 30, 1462-1468.	0.7	181
59	Electrical resistance measurements on cerebral capillary endothelial cells — a new technique to study small surface areas. Journal of Proteomics, 1995, 30, 227-238.	2.4	28
60	Translational diffusion measurements of a fluorescent phospholipid between MDCK-I cells support the lipid model of the tight junctions. Chemistry and Physics of Lipids, 1994, 71, 133-143.	1.5	41
61	Implications of a non-lamellar lipid phase for the tight junction stability. Chemistry and Physics of Lipids, 1992, 63, 213-221.	1.5	13
62	The Susceptibility of Cerebral Endothelial Cells to Astroglial Induction of Blood-Brain Barrier Enzymes Depends on Their Proliferative State. Journal of Neurochemistry, 1991, 57, 1971-1977.	2.1	123
63	Pressure-induced changes in the molecular organization of a lipid-peptide complex. Polymyxin binding to phosphatidic acid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1980, 602, 522-530.	1.4	24
64	Cooperative lipid-protein interaction. Effect of pH and ionic strength on polymyxin binding to phosphatidic acid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1979, 557, 320-330.	1.4	43
65	Polymyxin binding to charged lipid membranes an example of cooperative lipid-protein interaction. Biochimica Et Biophysica Acta - Biomembranes, 1978, 510, 124-139.	1.4	105
66	Binding of polylysine to charged bilayer membranes. Molecular organization of a lipid · peptide complex. Biochimica Et Biophysica Acta - Biomembranes, 1978, 509, 474-490.	1.4	147
67	Lateral diffusion in the hydrophobic region of membranes: use of pyrene excimers as optical probes. Biochimica Et Biophysica Acta - Biomembranes, 1974, 339, 103-115.	1.4	376