List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/766851/publications.pdf Version: 2024-02-01

ΗΛΙΥΛΝ ΡΕ

#	Article	IF	CITATIONS
1	Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresource Technology, 2013, 141, 245-251.	4.8	236
2	How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresource Technology, 2014, 157, 316-326.	4.8	198
3	Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: Nutrient, organics removal and bioenergy production. Chemical Engineering Journal, 2018, 332, 277-285.	6.6	147
4	Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renewable Energy, 2018, 115, 276-287.	4.3	100
5	Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresource Technology, 2018, 250, 449-456.	4.8	90
6	Chitosan for direct bioflocculation of wastewater. Environmental Chemistry Letters, 2019, 17, 1603-1621.	8.3	90
7	Phytohormone addition coupled with nitrogen depletion almost tripled the lipid productivities in two algae. Bioresource Technology, 2018, 247, 904-914.	4.8	86
8	Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater. Bioresource Technology, 2014, 152, 471-476.	4.8	81
9	The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresource Technology, 2017, 239, 87-96.	4.8	71
10	Optimization and lipid production enhancement of microalgae culture by efficiently changing the conditions along with the growth-state. Energy Conversion and Management, 2015, 90, 315-322.	4.4	64
11	The growth and lipid accumulation of Scenedesmus quadricauda during batch mixotrophic/heterotrophic cultivation using xylose as a carbon source. Bioresource Technology, 2018, 263, 525-531.	4.8	64
12	A promising application of chitosan quaternary ammonium salt to removal of Microcystis aeruginosa cells from drinking water. Science of the Total Environment, 2017, 583, 496-504.	3.9	63
13	Algal–bacterial consortia for bioproduct generation and wastewater treatment. Renewable and Sustainable Energy Reviews, 2021, 149, 111395.	8.2	63
14	In situ heterogeneous transesterification of microalgae using combined ultrasound and microwave irradiation. Energy Conversion and Management, 2015, 90, 41-46.	4.4	62
15	Allelopathic effects of Ailanthus altissima extracts on Microcystis aeruginosa growth, physiological changes and microcystins release. Chemosphere, 2015, 141, 219-226.	4.2	60
16	The effect of algae species on the bioelectricity and biodiesel generation through open-air cathode microbial fuel cell with kitchen waste anaerobically digested effluent as substrate. Bioresource Technology, 2016, 218, 902-908.	4.8	58
17	The feasibility of using complex wastewater from a monosodium glutamate factory to cultivate Spirulina subsalsa and accumulate biochemical composition. Bioresource Technology, 2015, 180, 304-310.	4.8	56
18	Mutual facilitations of food waste treatment, microbial fuel cell bioelectricity generation and Chlorella vulgaris lipid production. Bioresource Technology, 2016, 203, 50-55.	4.8	56

#	Article	IF	CITATIONS
19	Phosphorus adsorption characteristics of alum sludge: Adsorption capacity and the forms of phosphorus retained in alum sludge. Materials Letters, 2018, 229, 31-35.	1.3	54
20	Variation of cyanobacteria with different environmental conditions in Nansi Lake, China. Journal of Environmental Sciences, 2012, 24, 1394-1402.	3.2	45
21	The fate of <i>Microcystis aeruginosa</i> cells during the ferric chloride coagulation and flocs storage processes. Environmental Technology (United Kingdom), 2015, 36, 920-928.	1.2	45
22	Multiple anodic chambers sharing an algal raceway pond to establish a photosynthetic microbial fuel cell stack: Voltage boosting accompany wastewater treatment. Water Research, 2019, 164, 114955.	5.3	45
23	ldentification and characterization of a freshwater microalga Scenedesmus SDEC-8 for nutrient removal and biodiesel production. Bioresource Technology, 2014, 162, 129-135.	4.8	44
24	Integrated campus sewage treatment and biomass production by Scenedesmus quadricauda SDEC-13. Bioresource Technology, 2015, 175, 262-268.	4.8	44
25	Beneficial changes in biomass and lipid of microalgae Anabaena variabilis facing the ultrasonic stress environment. Bioresource Technology, 2016, 209, 16-22.	4.8	44
26	Effect of diethyl aminoethyl hexanoate on the accumulation of high-value biocompounds produced by two novel isolated microalgae. Bioresource Technology, 2015, 197, 178-184.	4.8	42
27	The growth characteristics and biodiesel production of ten algae strains cultivated in anaerobically digested effluent from kitchen waste. Algal Research, 2017, 24, 265-275.	2.4	42
28	Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresource Technology, 2014, 165, 38-41.	4.8	41
29	Biomass production and nutrient assimilation by a novel microalga, Monoraphidium spp. SDEC-17, cultivated in a high-ammonia wastewater. Energy Conversion and Management, 2016, 123, 423-430.	4.4	41
30	Using a tubular photosynthetic microbial fuel cell to treat anaerobically digested effluent from kitchen waste: Mechanisms of organics and ammonium removal. Bioresource Technology, 2018, 256, 11-16.	4.8	41
31	High-throughput sequencing reveals microbial communities in drinking water treatment sludge from six geographically distributed plants, including potentially toxic cyanobacteria and pathogens. Science of the Total Environment, 2018, 634, 769-779.	3.9	40
32	Spatiotemporal distribution pattern of cyanobacteria community and its relationship with the environmental factors in Hongze Lake, China. Environmental Monitoring and Assessment, 2014, 186, 6919-6933.	1.3	39
33	Inclined algal biofilm photobioreactor (IABPBR) for cost-effective cultivation of lipid-rich microalgae and treatment of seawater-diluted anaerobically digested effluent from kitchen waste with the aid of phytohormones. Bioresource Technology, 2020, 315, 123761.	4.8	39
34	The effects of algal extracellular substances on algal growth, metabolism and long-term medium recycle, and inhibition alleviation through ultrasonication. Bioresource Technology, 2018, 267, 192-200.	4.8	38
35	Toward facilitating microalgae cope with effluent from anaerobic digestion of kitchen waste: the art of agricultural phytohormones. Biotechnology for Biofuels, 2017, 10, 76.	6.2	37
36	Use of fluorescence excitation–emission matrices coupled with parallel factor analysis to monitor C- and N-DBPs formation in drinking water recovered from cyanobacteria-laden sludge dewatering. Science of the Total Environment, 2018, 640-641, 609-618.	3.9	37

#	Article	IF	CITATIONS
37	Detection of amount and activity of living algae in fresh water by dehydrogenase activity (DHA). Environmental Monitoring and Assessment, 2008, 146, 473-478.	1.3	36
38	Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste. Biotechnology for Biofuels, 2018, 11, 68.	6.2	36
39	Coupling a photosynthetic microbial fuel cell (PMFC) with photobioreactors (PBRs) for pollutant removal and bioenergy recovery from anaerobically digested effluent. Chemical Engineering Journal, 2019, 359, 402-408.	6.6	36
40	Enhancing integrated removal of Microcystis aeruginosa and adsorption of microcystins using chitosan-aluminum chloride combined coagulants: Effect of chemical dosing orders and coagulation mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 258-267.	2.3	35
41	Phytoplankton variation and its relationship with the environmental factors in Nansi Lake, China. Environmental Monitoring and Assessment, 2013, 185, 295-310.	1.3	34
42	Study of KOH/Al ₂ O ₃ as heterogeneous catalyst for biodiesel production via <i>in situ</i> transesterification from microalgae. Environmental Technology (United Kingdom), 2015, 36, 622-627.	1.2	34
43	Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China. Environmental Science and Pollution Research, 2015, 22, 18163-18175.	2.7	33
44	Characteristics of water obtained by dewatering cyanobacteria-containing sludge formed during drinking water treatment, including C-, N-disinfection byproduct formation. Water Research, 2017, 111, 382-392.	5.3	33
45	Impact of copper sulphate, potassium permanganate, and hydrogen peroxide on Pseudanabaena galeata cell integrity, release and degradation of 2-methylisoborneol. Water Research, 2019, 157, 64-73.	5.3	33
46	Effect of different plant species on nutrient removal and rhizospheric microorganisms distribution in horizontal-flow constructed wetlands. Environmental Technology (United Kingdom), 2014, 35, 808-816.	1.2	32
47	Growth of large-cell and easily-sedimentation microalgae Golenkinia SDEC-16 for biofuel production and campus sewage treatment. Renewable Energy, 2018, 122, 517-525.	4.3	32
48	Environmental factors influencing cyanobacteria community structure in Dongping Lake, China. Journal of Environmental Sciences, 2013, 25, 2196-2206.	3.2	31
49	Effect of high-temperature stress on microalgae at the end of the logarithmic phase for the efficient production of lipid. Environmental Technology (United Kingdom), 2016, 37, 2649-2657.	1.2	31
50	Microalgae nourished by mariculture wastewater aids aquaculture self-reliance with desirable biochemical composition. Bioresource Technology, 2019, 278, 205-213.	4.8	31
51	Using an anaerobic digestion tank as the anodic chamber of an algae-assisted microbial fuel cell to improve energy production from food waste. Water Research, 2020, 170, 115305.	5.3	30
52	Features of Golenkinia sp. and microbial fuel cells used for the treatment of anaerobically digested effluent from kitchen waste at different dilutions. Bioresource Technology, 2017, 240, 130-136.	4.8	29
53	Fe2+ activating sodium percarbonate (SPC) to enhance removal of Microcystis aeruginosa and microcystins with pre-oxidation and in situ coagulation. Journal of Hazardous Materials, 2021, 412, 125206.	6.5	29
54	Behavior of Cylindrospermopsis raciborskii during coagulation and sludge storage – higher potential risk of toxin release than Microcystis aeruginosa?. Journal of Hazardous Materials, 2018, 347, 307-316.	6.5	28

#	Article	IF	CITATIONS
55	Application of N-TiO2 for visible-light photocatalytic degradation of Cylindrospermopsis raciborskii — More difficult than that for photodegradation of Microcystis aeruginosa ?. Environmental Pollution, 2019, 245, 642-650.	3.7	28
56	The removal of cyanobacteria and their metabolites through anoxic biodegradation in drinking water sludge. Bioresource Technology, 2014, 165, 191-198.	4.8	27
57	Behaviors of Microcystis aeruginosa cells during floc storage in drinking water treatment process. Scientific Reports, 2016, 6, 34943.	1.6	27
58	Evaluation on the dewatering process of cyanobacteria-containing AlCl3 and PACl drinking water sludge. Separation and Purification Technology, 2015, 150, 52-62.	3.9	26
59	The enhanced reduction of C- and N-DBP formation in treatment of source water containing Microcystis aeruginosa using a novel CTSAC composite coagulant. Science of the Total Environment, 2017, 579, 1170-1178.	3.9	25
60	16S rRNA Gene Amplicon Sequencing Reveals Significant Changes in Microbial Compositions during Cyanobacteria-Laden Drinking Water Sludge Storage. Environmental Science & Technology, 2017, 51, 12774-12783.	4.6	25
61	Growth and lipid accumulation properties of microalgal Phaeodactylum tricornutum under different gas liquid ratios. Bioresource Technology, 2014, 165, 31-37.	4.8	24
62	Worse than cell lysis: The resilience of Oscillatoria sp. during sludge storage in drinking water treatment. Water Research, 2018, 142, 405-414.	5.3	24
63	Characterization of a microalgal mutant for CO2 biofixation and biofuel production. Energy Conversion and Management, 2016, 122, 344-349.	4.4	23
64	Inactivation of Microcystis aeruginosa by hydrogen-terminated porous Si wafer: Performance and mechanisms. Journal of Photochemistry and Photobiology B: Biology, 2016, 158, 23-29.	1.7	23
65	18S rRNA gene sequencing reveals significant influence of anthropogenic effects on microeukaryote diversity and composition along a river-to-estuary gradient ecosystem. Science of the Total Environment, 2020, 705, 135910.	3.9	23
66	Using photocatalyst powder to enhance the coagulation and sedimentation of cyanobacterial cells and enable the sludge to be self-purified under visible light. Water Research, 2018, 143, 550-560.	5.3	20
67	Filamentous cyanobacteria triples oil production in seawater-based medium supplemented with industrial waste: monosodium glutamate residue. Biotechnology for Biofuels, 2019, 12, 53.	6.2	19
68	Biofilm development dynamics and pollutant removal performance of ceramsite made from drinkingâ€water treatment sludge. Water Environment Research, 2019, 91, 616-627.	1.3	19
69	Using sodium percarbonate to suppress vertically distributed filamentous cyanobacteria while maintaining the stability of microeukaryotic communities in drinking water reservoirs. Water Research, 2021, 197, 117111.	5.3	19
70	Bioaugmentation in a pilot-scale constructed wetland to treat domestic wastewater in summer and autumn. Environmental Science and Pollution Research, 2016, 23, 7776-7785.	2.7	18
71	Photodegradation activity and stability of porous silicon wafers with (1 0 0) and (1 1 1) oriented crystal planes. Microporous and Mesoporous Materials, 2015, 204, 251-256.	2.2	17
72	Using a novel hydrogen-terminated porous Si wafer to enhance Microcystis aeruginosa effective removal by chitosan at a low dosage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 88-96.	2.3	17

#	Article	IF	CITATIONS
73	Mixing Seawater with a Little Wastewater to Produce Bioenergy from Limnetic Algae. Trends in Biotechnology, 2018, 36, 480-483.	4.9	17
74	Effects of air bubble size on algal growth rate and lipid accumulation using fine-pore diffuser photobioreactors. Algal Research, 2018, 32, 293-299.	2.4	17
75	Variation of phytoplankton communities and their driving factors along a disturbed temperate river-to-sea ecosystem. Ecological Indicators, 2020, 118, 106776.	2.6	17
76	Enhancing the photocatalytic activity of GaN by electrochemical etching. Materials Research Bulletin, 2015, 70, 881-886.	2.7	16
77	Significantly enhanced dewatering performance of drinking water sludge from a coagulation process using a novel chitosan–aluminum chloride composite coagulant in the treatment of cyanobacteria-laden source water. RSC Advances, 2016, 6, 61047-61056.	1.7	16
78	Adjusting irradiance to enhance growth and lipid production of Chlorella vulgaris cultivated with monosodium glutamate wastewater. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 619-624.	1.7	15
79	Improving productivity and quality of biodiesel from Chlorella vulgaris SDEC-3M through customized process designs. Energy Conversion and Management, 2016, 129, 100-107.	4.4	15
80	Accelerating lipid production in freshwater alga Chlorella sorokiniana SDEC-18 by seawater and ultrasound during the stationary phase. Renewable Energy, 2020, 161, 448-456.	4.3	15
81	The lysis and regrowth of toxic cyanobacteria during storage of achitosan–aluminium chloride composite coagulated sludge: implications for drinking water sludge treatment. RSC Advances, 2016, 6, 112756-112764.	1.7	14
82	Evidence for a mutualistic relationship between the cyanobacteria Nostoc and fungi Aspergilli in different environments. Applied Microbiology and Biotechnology, 2020, 104, 6413-6426.	1.7	14
83	Effects of glucose on microcystin-LR removal and the bacterial community composition through anoxic biodegradation in drinking water sludge. Environmental Technology (United Kingdom), 2016, 37, 64-73.	1.2	12
84	Characterization and optimization of endogenous lipid accumulation in Chlorella vulgaris SDEC-3M ability to rapidly accumulate lipid for reversing nightly lipid loss. Biotechnology for Biofuels, 2019, 12, 151.	6.2	12
85	Dinoflagellate cyst abundance is positively correlated to sediment organic carbon in Sydney Harbour and Botany Bay, NSW, Australia. Environmental Science and Pollution Research, 2018, 25, 5808-5821.	2.7	11
86	Using quartz sand to enhance the removal efficiency of M. aeruginosa by inorganic coagulant and achieve satisfactory settling efficiency. Scientific Reports, 2017, 7, 13586.	1.6	10
87	Phytoplankton Functional Groups Variation and Influencing Factors in a Shallow Temperate Lake. Water Environment Research, 2018, 90, 510-519.	1.3	10
88	Monosodium glutamate wastewater assisted seawater to increase lipid productivity in single-celled algae. Renewable Energy, 2021, 179, 1793-1802.	4.3	10
89	Cyanobacterial bloom intensities determine planktonic eukaryote community structure and stability. Science of the Total Environment, 2022, 838, 156637.	3.9	10
90	Effect of chitosan quaternary ammonium salt on the growth and microcystins release of Microcystis aeruginosa. RSC Advances, 2016, 6, 81028-81036.	1.7	9

#	Article	IF	CITATIONS
91	Moderate pre-ozonation coupled with a post-peroxone process remove filamentous cyanobacteria and 2-MIB efficiently: From bench to pilot-scale study. Journal of Hazardous Materials, 2022, 424, 127530.	6.5	9
92	Performance Evaluation of Lightâ€Weight Aggregatesâ€Based Horizontal Flow Constructed Wetlands for Domestic Wastewater Treatment. Clean - Soil, Air, Water, 2015, 43, 217-222.	0.7	8
93	Degradation mechanism of hydrogen-terminated porous silicon in the presence and in the absence of light. AIP Advances, 2015, 5, .	0.6	7
94	Biomass and lipid accumulation of three new screened microalgae with high concentration of carbon dioxide and nitric oxide. Environmental Technology (United Kingdom), 2015, 36, 2278-2284.	1.2	7
95	Seasonal pattern of cyanobacteria community and its relationship with environmental factors: a case study in Luoma Lake, East China. Desalination and Water Treatment, 2016, 57, 6658-6669.	1.0	7
96	Chitosan for Direct Bioflocculation Processes. Sustainable Agriculture Reviews, 2019, , 335-380.	0.6	7
97	Seawater-cultured Spirulina subsalsa as a more promising host for phycocyanin production than Arthrospira platensis. Algal Research, 2021, 60, 102545.	2.4	7
98	Campus Sewage Treatment by <i>Golenkinia</i> SDEC-16 and Biofuel Production under Monochromic Light. Journal of Chemistry, 2020, 2020, 1-9.	0.9	6
99	Denitrifying characterization and identification of a novel soil bacterium XP-2. Desalination and Water Treatment, 2014, 52, 6996-7003.	1.0	5
100	The seasonal and spatial variations in diatom communities and the influence of environmental factors on three temperate reservoirs in Shandong province, China. Environmental Science and Pollution Research, 2019, 26, 24503-24515.	2.7	5
101	Heuristic Optimization of Culture Conditions for Stimulating Hyper-Accumulation of Biomass and Lipid in Golenkinia SDEC-16. Energies, 2020, 13, 964.	1.6	4
102	Primary investigation of the antialgal activity of shrimp shell on Microcystis aeruginosa. Environmental Science and Pollution Research, 2018, 25, 20662-20669.	2.7	2
103	Seawater with Added Monosodium Glutamate Residue (MSGR) Is a Promising Medium for the Cultivation of Two Commercial Marine Microalgae. Water (Switzerland), 2022, 14, 975.	1.2	2
104	Assessment of Trophic Status for Nansi Lake Using Trophic State Index and Phytoplankton Community. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
105	The Effect of Mechanical Agitation on the Stripping of Bio-Film from Ceramic Particles. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
106	Notice of Retraction: Assessment of Trophic Status for Dongping Lake Using Comprehensive Trophic State Index and Diversity Indices. , 2011, , .		1
107	Coupled microalgal cultivation with the treatment of domestic sewage and high-level CO ₂ . Environmental Technology (United Kingdom), 2018, 39, 1422-1429.	1.2	1
108	Study on the Method of Detecting Dehydrogenase Activity of Living Algae in Fresh Water. , 2008, , .		0

#	Article	IF	CITATIONS
109	Nitrification Performance of a Pilot-Scale UBAF Treating Secondary Effluent of Municipal Sewage. , 2009, , .		0