Akifumi S Tanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7668467/publications.pdf

Version: 2024-02-01

37 papers

3,262 citations

331259 21 h-index 329751 37 g-index

44 all docs

44 docs citations

times ranked

44

4116 citing authors

#	Article	IF	Citations
1	High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. PLoS ONE, 2012, 7, e40863.	1.1	895
2	Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources, 2011, 11, 914-921.	2.2	608
3	kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Molecular Ecology Notes, 2007, 7, 962-964.	1.7	263
4	Two New Computational Methods for Universal DNA Barcoding: A Benchmark Using Barcode Sequences of Bacteria, Archaea, Animals, Fungi, and Land Plants. PLoS ONE, 2013, 8, e76910.	1.1	224
5	Community composition of rootâ€associated fungi in a <i><scp>Q</scp>uercus</i> à€dominated temperate forest: "codominanceâ€of mycorrhizal and rootâ€endophytic fungi. Ecology and Evolution, 2013, 3, 1281-1293.	0.8	133
6	Network hubs in root-associated fungal metacommunities. Microbiome, 2018, 6, 116.	4.9	112
7	Network modules and hubs in plant-root fungal biomes. Journal of the Royal Society Interface, 2016, 13, 20151097.	1.5	100
8	Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME Journal, 2013, 7, 1378-1390.	4.4	90
9	Diversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants. PLoS ONE, 2014, 9, e86566.	1.1	81
10	Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Scientific Reports, 2014, 4, 4641.	1.6	80
11	Comparative study of the validity of three regions of the 18Sâ€ <scp>rRNA</scp> gene for massively parallel sequencingâ€based monitoring of the planktonic eukaryote community. Molecular Ecology Resources, 2016, 16, 402-414.	2.2	80
12	Sharing of Diverse Mycorrhizal and Root-Endophytic Fungi among Plant Species in an Oak-Dominated Cool–Temperate Forest. PLoS ONE, 2013, 8, e78248.	1.1	76
13	Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Communications Biology, 2018, 1, 196.	2.0	73
14	How are plant and fungal communities linked to each other in belowground ecosystems? A massively parallel pyrosequencing analysis of the association specificity of rootâ€associated fungi and their host plants. Ecology and Evolution, 2013, 3, 3112-3124.	0.8	71
15	Deep microbial life in highâ€quality granitic groundwater from geochemically and geographically distinct underground boreholes. Environmental Microbiology Reports, 2016, 8, 285-294.	1.0	35
16	Extreme population genetic differentiation and secondary contact in the freshwater copepod <i>Acanthodiaptomus pacificus</i> in the Japanese Archipelago. Molecular Ecology, 2009, 18, 3699-3713.	2.0	34
17	Spatial Segregation and Aggregation of Ectomycorrhizal and Root-Endophytic Fungi in the Seedlings of Two Quercus Species. PLoS ONE, 2014, 9, e96363.	1.1	32
18	Host shifts enhance diversification of ectomycorrhizal fungi: diversification rate analysis of the ectomycorrhizal fungal genera <i>Strobilomyces</i> and <i>Afroboletus</i> with an 80â€gene phylogeny. New Phytologist, 2017, 214, 443-454.	3.5	32

#	Article	lF	CITATIONS
19	Contrasting Diversity and Host Association of Ectomycorrhizal Basidiomycetes versus Root-Associated Ascomycetes in a Dipterocarp Rainforest. PLoS ONE, 2015, 10, e0125550.	1.1	31
20	Detection of the horizontal spatial structure of soil fungal communities in a natural forest. Population Ecology, 2014, 56, 301-310.	0.7	29
21	Entangling Ancient Allotetraploidization in Asian Mitella: An Integrated Approach for Multilocus Combinations. Molecular Biology and Evolution, 2012, 29, 429-439.	3.5	24
22	Diet disparity among sympatric herbivorous cichlids in the same ecomorphs in Lake Tanganyika: amplicon pyrosequences on algal farms and stomach contents. BMC Biology, 2014, 12, 90.	1.7	23
23	Structure of phyllosphere fungal communities in a tropical dipterocarp plantation: A massively parallel next-generation sequencing analysis. Mycoscience, 2016, 57, 171-180.	0.3	18
24	Improving the standards for gut microbiome analysis of fecal samples: insights from the field biology of Japanese macaques on Yakushima Island. Primates, 2018, 59, 423-436.	0.7	18
25	Specialized mycorrhizal association between a partially mycoheterotrophic orchid Oreorchis indica and a Tomentella taxon. Mycorrhiza, 2021, 31, 243-250.	1.3	16
26	Phylogeny and biogeography of the genus Stevia (Asteraceae: Eupatorieae): an example of diversification in the Asteraceae in the new world. Journal of Plant Research, 2017, 130, 953-972.	1.2	12
27	Rapid detection of macroalgal seed bank on cobbles: application of DNA metabarcoding using next-generation sequencing. Journal of Applied Phycology, 2019, 31, 2743-2753.	1.5	12
28	The fauna of freshwater calanoid copepods in Japan in the early decades of the 21 st Century: Implications for the assessment and conservation of biodiversity. Limnology and Oceanography, 2018, 63, 758-772.	1.6	10
29	Structural diversity across arbuscular mycorrhizal, ectomycorrhizal, and endophytic plant–fungus networks. BMC Plant Biology, 2018, 18, 292.	1.6	9
30	Sedimentary Facies and Depositional Rates of Submarine Cave Sediment in a Coral Reef of Okinawa. The Quaternary Research, 2003, 42, 99-104.	0.2	8
31	Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat. Mycorrhiza, 2021, 31, 219-229.	1.3	6
32	Eukaryotic diversity in late Pleistocene marine sediments around a shallow methane hydrate deposit in the Japan Sea. Geobiology, 2017, 15, 715-727.	1.1	5
33	Composition and Diversity of Soil Fungi in Dipterocarpaceae-Dominated Seasonal Tropical Forests in Thailand. Microbes and Environments, 2018, 33, 135-143.	0.7	4
34	A new resource of single nucleotide polymorphisms in the Japanese eel Anguilla japonica derived from restriction site-associated DNA. Ichthyological Research, 2016, 63, 496-504.	0.5	3
35	Aboveground herbivores drive stronger plant species-specific feedback than belowground fungi to regulate tree community assembly. Oecologia, 2021, 195, 773-784.	0.9	2
36	New Records of Hairworms (Nematomorpha: Gordiida) from Japan. Species Diversity, 2009, 14, 131-135.	0.1	2

ARTICLE IF CITATIONS

An asynchronous parallel genetic algorithm for the maximum likelihood phylogenetic tree search.,

2012,,...

O