
Gwendolyn BarcelÃ³-Coblijn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7668420/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Polyunsaturated Fatty Acid-Enriched Lipid Fingerprint of Glioblastoma Proliferative Regions Is Differentially Regulated According to Glioblastoma Molecular Subtype. International Journal of Molecular Sciences, 2022, 23, 2949.	1.8	5
2	A Drastic Shift in Lipid Adducts in Colon Cancer Detected by MALDI-IMS Exposes Alterations in Specific K+ Channels. Cancers, 2021, 13, 1350.	1.7	4
3	Fatty Acid Unsaturation Degree of Plasma Exosomes in Colorectal Cancer Patients: A Promising Biomarker. International Journal of Molecular Sciences, 2021, 22, 5060.	1.8	19
4	Immune Landscape in Tumor Microenvironment: Implications for Biomarker Development and Immunotherapy. International Journal of Molecular Sciences, 2020, 21, 5521.	1.8	25
5	Improving Spatial Resolution of a LTQ Orbitrap MALDI Source. Journal of the American Society for Mass Spectrometry, 2020, 31, 1755-1758.	1.2	5
6	Common and Differential Traits of the Membrane Lipidome of Colon Cancer Cell Lines and Their Secreted Vesicles: Impact on Studies Using Cell Lines. Cancers, 2020, 12, 1293.	1.7	19
7	Editorial of Special Issue "The Interplay of Microbiome and Immune Response in Health and Diseases― International Journal of Molecular Sciences, 2019, 20, 3708.	1.8	5
8	Ins and Outs of Interpreting Lipidomic Results. Journal of Molecular Biology, 2019, 431, 5039-5062.	2.0	9
9	Confirmation of sub-cellular resolution using oversampling imaging mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 7935-7941.	1.9	9
10	P465Lâ€PPARγ mutation confers partial resistance to the hypolipidaemic action of fibrates. Diabetes, Obesity and Metabolism, 2018, 20, 2339-2350.	2.2	4
11	Tissue-selective alteration of ethanolamine plasmalogen metabolism in dedifferentiated colon mucosa. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 928-938.	1.2	27
12	Rump and shoulder muscles from grass and linseed fed cattle as important sources of nâ€3 fatty acids for beef consumers. European Journal of Lipid Science and Technology, 2017, 119, 1600390.	1.0	6
13	Lipid fingerprint image accurately conveys human colon cell pathophysiologic state: A solid candidate as biomarker. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1942-1950.	1.2	25
14	Optimized Protocol To Analyze Changes in the Lipidome of Xenografts after Treatment with 2-Hydroxyoleic Acid. Analytical Chemistry, 2016, 88, 1022-1029.	3.2	9
15	Identification of Biomarkers of Necrosis in Xenografts Using Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 244-254.	1.2	26
16	lmaging mass spectrometry increased resolution using 2-mercaptobenzothiazole and 2,5-diaminonaphtalene matrices: application to lipid distribution in human colon. Analytical and Bioanalytical Chemistry, 2015, 407, 4697-4708.	1.9	40
17	Mass spectrometry coupled to imaging techniques: the better the view the greater the challenge. Frontiers in Physiology, 2015, 6, 3.	1.3	24
18	Membrane lipid modifications and therapeutic effects mediated by hydroxydocosahexaenoic acid on Alzheimer's disease. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1680-1692.	1.4	50

#	Article	IF	CITATIONS
19	Differential effect of 2-hydroxyoleic acid enantiomers on protein (sphingomyelin synthase) and lipid (membrane) targets. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1628-1637.	1.4	29
20	Analysis of the Lipidome of Xenografts Using MALDI-IMS and UHPLC-ESI-QTOF. Journal of the American Society for Mass Spectrometry, 2014, 25, 1237-1246.	1.2	20
21	Prenatal Ethanol Exposure Increases Brain Cholesterol Content in Adult Rats. Lipids, 2013, 48, 1059-1068.	0.7	11
22	The role of membrane fatty acid remodeling in the antitumor mechanism of action of 2-hydroxyoleic acid. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1405-1413.	1.4	39
23	Sustained activation of sphingomyelin synthase by 2-hydroxyoleic acid induces sphingolipidosis in tumor cells. Journal of Lipid Research, 2013, 54, 1457-1465.	2.0	14
24	2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8489-8494.	3.3	95
25	Normalization of sphingomyelin levels by 2-hydroxyoleic acid induces autophagic cell death of SF767 cancer cells. Autophagy, 2012, 8, 1542-1544.	4.3	14
26	Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19569-19574.	3.3	142
27	The role of α-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Molecular and Cellular Biochemistry, 2009, 326, 55-66.	1.4	69
28	Alpha-linolenic acid and its conversion to longer chain nâ^'3 fatty acids: Benefits for human health and a role in maintaining tissue nâ^'3 fatty acid levels. Progress in Lipid Research, 2009, 48, 355-374.	5.3	447
29	An Improved Method for Separating Cardiolipin by HPLC. Lipids, 2008, 43, 971-976.	0.7	7
30	Membranes: a meeting point for lipids, proteins and therapies. Journal of Cellular and Molecular Medicine, 2008, 12, 829-875.	1.6	348
31	Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13811-13816.	3.3	386
32	Flaxseed oil and fish-oil capsule consumption alters human red blood cell n–3 fatty acid composition: a multiple-dosing trial comparing 2 sources of n–3 fatty acid. American Journal of Clinical Nutrition, 2008, 88, 801-809.	2.2	159
33	Flaxseed Treatments to Reduce Biohydrogenation of αâ€Linolenic Acid by Rumen Microbes in Cattle. Lipids, 2007, 42, 1105-1111.	0.7	38
34	Effect of processing flax in beef feedlot diets on performance, carcass characteristics, and trained sensory panel ratings1. Journal of Animal Science, 2006, 84, 1544-1551.	0.2	64
35	Brain neutral lipids mass is increased in α-synuclein gene-ablated mice. Journal of Neurochemistry, 2006, 101, 132-141.	2.1	99
36	Bovine muscle nâ^'3 fatty acid content is increased with flaxseed feeding. Lipids, 2006, 41, 1059-1068.	0.7	47

#	Article	IF	CITATIONS
37	Dietary α-linolenic acid increases brain but not heart and liver docosahexaenoic acid levels. Lipids, 2005, 40, 787-798.	0.7	57
38	Mitochondrial Lipid Abnormality and Electron Transport Chain Impairment in Mice Lacking α-Synuclein. Molecular and Cellular Biology, 2005, 25, 10190-10201.	1.1	233
39	Heart Fatty Acid Uptake Is Decreased in Heart Fatty Acid-binding Protein Gene-ablated Mice. Journal of Biological Chemistry, 2004, 279, 34481-34488.	1.6	49
40	Gene expression and molecular composition of phospholipids in rat brain in relation to dietary nâ^'6 to nâ^'3 fatty acid ratio. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1632, 72-79.	1.2	87
41	Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11321-11326.	3.3	137
42	Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1580-1585.	3.3	160
43	The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2619-2624.	3.3	285