Robert Caesar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7668287/publications.pdf Version: 2024-02-01

ROBERT CAESAR

#	Article	IF	CITATIONS
1	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	15.2	102
2	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	13.7	102
3	Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut, 2020, 69, 1229-1238.	6.1	33
4	Hepatic expression of lipopolysaccharide-binding protein (Lbp) is induced by the gut microbiota through Myd88 and impairs glucose tolerance in mice independent of obesity. Molecular Metabolism, 2020, 37, 100997.	3.0	13
5	Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 461-472.	2.6	587
6	Liver-specific RORα deletion does not affect the metabolic susceptibility to western style diet feeding. Molecular Metabolism, 2019, 23, 82-87.	3.0	4
7	Pharmacologic and Nonpharmacologic Therapies for the Gut Microbiota in Type 2 Diabetes. Canadian Journal of Diabetes, 2019, 43, 224-231.	0.4	43
8	Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia, 2018, 61, 810-820.	2.9	313
9	Impact of Gut Microbiota and Diet on the Development of Atherosclerosis in <i>Apoe</i> ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2318-2326.	1.1	123
10	Microbiota-induced obesity requires farnesoid X receptor. Gut, 2017, 66, 429-437.	6.1	355
11	Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 2017, 23, 850-858.	15.2	1,165
12	Host–microbiota interaction induces bi-phasic inflammation and glucose intolerance in mice. Molecular Metabolism, 2017, 6, 1371-1380.	3.0	30
13	Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism. Journal of Lipid Research, 2016, 57, 474-481.	2.0	72
14	Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metabolism, 2015, 22, 658-668.	7.2	763
15	Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nature Communications, 2014, 5, 5648.	5.8	197
16	Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut, 2012, 61, 1701-1707.	6.1	252
17	A Combined Transcriptomics and Lipidomics Analysis of Subcutaneous, Epididymal and Mesenteric Adipose Tissue Reveals Marked Functional Differences. PLoS ONE, 2010, 5, e11525.	1.1	79
18	The NuGO proof of principle study package: a collaborative research effort of the European Nutrigenomics Organisation. Genes and Nutrition, 2008, 3, 147-151.	1.2	22

#	Article	IF	CITATIONS
19	Pancreatic contamination of mesenteric adipose tissue samples can be avoided by adjusted dissection procedures. Journal of Lipid Research, 2008, 49, 1588-1594.	2.0	14