John A Pollock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/766800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behavioral and inflammatory sex differences revealed by celecoxib nanotherapeutic treatment of peripheral neuroinflammation. Scientific Reports, 2022, 12, .	3.3	7
2	Targeted cyclooxygenase-2 inhibiting nanomedicine results in pain-relief and differential expression of the RNA transcriptome in the dorsal root ganglia of injured male rats. Molecular Pain, 2020, 16, 174480692094330.	2.1	5
3	The Use of a Mobile Application to Teach Concussion-Related Health Knowledge. Journal of STEM Outreach, 2020, 3, .	0.5	2
4	Nanomedicine-driven neuropathic pain relief in a rat model is associated with macrophage polarity and mast cell activation. Acta Neuropathologica Communications, 2019, 7, 108.	5.2	22
5	Differential Expression of Neuroinflammatory mRNAs in the Rat Sciatic Nerve Following Chronic Constriction Injury and Pain-Relieving Nanoemulsion NSAID Delivery to Infiltrating Macrophages. International Journal of Molecular Sciences, 2019, 20, 5269.	4.1	20
6	A New Best Practice for Validating Tail Vein Injections in Rat with Near-infrared-Labeled Agents. Journal of Visualized Experiments, 2019, , .	0.3	5
7	Backward design as a mobile application development strategy. Educational Technology Research and Development, 2019, 67, 711-731.	2.8	5
8	Low-dose NSAIDs reduce pain via macrophage targeted nanoemulsion delivery to neuroinflammation of the sciatic nerve in rat. Journal of Neuroimmunology, 2018, 318, 72-79.	2.3	36
9	Summer undergraduate research: A new pipeline for pain clinical practice and research. BMC Medical Education, 2016, 16, 135.	2.4	10
10	In vivo and systems biology studies implicate IL-18 as a central mediator in chronic pain. Journal of Neuroimmunology, 2015, 283, 43-49.	2.3	27
11	Imaging Neuroinflammation In Vivo in a Neuropathic Pain Rat Model with Near-Infrared Fluorescence and 19F Magnetic Resonance. PLoS ONE, 2014, 9, e90589.	2.5	36
12	Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemulsions. Journal of Biomedical Optics, 2013, 18, 101312.	2.6	30
13	Suppressing inflammation from inside out with novel NIR visible perfluorocarbon nanotheranostics. Proceedings of SPIE, 2013, , .	0.8	5
14	Cyclooxgenase-2 Inhibiting Perfluoropoly (Ethylene Glycol) Ether Theranostic Nanoemulsions—In Vitro Study. PLoS ONE, 2013, 8, e55802.	2.5	44
15	Evaluating Learning and Attitudes on Tissue Engineering: A Study of Children Viewing Animated Digital Dome Shows Detailing the Biomedicine of Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 576-586.	3.1	1
16	The Tree, the Spiral and the Web of Life: A Visual Exploration of Biological Evolution for Public Murals. Leonardo, 2012, 45, 18-25.	0.3	3
17	A Family-Centered Educational Program to Promote Independence in Pediatric Heart Transplant Recipients. Progress in Transplantation, 2011, 21, 61-66.	0.7	4
18	A family-centered educational program to promote independence in pediatric heart transplant recipients. Progress in Transplantation, 2011, 21, 61-66.	0.7	4

JOHN A POLLOCK

#	Article	IF	CITATIONS
19	Ttk69-dependent repression of lozenge prevents the ectopic development of R7 cells in the Drosophila larval eye disc. BMC Developmental Biology, 2009, 9, 64.	2.1	14
20	Câ€ŧerminal domains within human MT ₁ and MT ₂ melatonin receptors are involved in internalization processes. Journal of Pineal Research, 2008, 45, 212-218.	7.4	20
21	<i>Helmsman</i> Is Expressed in Both Trachea and Photoreceptor Development: Partial Inactivation Alters Tracheal Morphology and Visually Guided Behavior. Journal of Neurogenetics, 2008, 22, 117-137.	1.4	2
22	Alternative splicing removes an Ets interaction domain from Lozenge during Drosophila eye development. Development Genes and Evolution, 2005, 215, 423-435.	0.9	17
23	Mutations in lozenge and D-Pax2 invoke ectopic patterned cell death in the developing Drosophila eye using distinct mechanisms. Development Genes and Evolution, 2003, 213, 107-119.	0.9	19
24	Yan regulates Lozenge during Drosophila eye development. Development Genes and Evolution, 2002, 212, 267-276.	0.9	16
25	Automated Light Microscopy for the Study of the Brain: Cellular and Molecular Dynamics, Development, and Tumorigenesis. Annals of the New York Academy of Sciences, 1997, 820, 208-228.	3.8	13
26	Genetic Analysis of the <i>Lozenge</i> Gene Complex in <i>Drosophila Melanogaster</i> : Adult Visual System Phenotypes. Journal of Neurogenetics, 1996, 10, 193-220.	1.4	21
27	Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14146-14151.	7.1	102
28	Region-specific expression of a K+ channel gene in brain Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4603-4607.	7.1	53
29	Expression of ion Channel Genes inDrosophila. Journal of Neurogenetics, 1991, 7, 229-239.	1.4	24
30	Subcellular localization of transcripts in Drosophila photoreceptor neurons: chaoptic mutants have an aberrant distribution Genes and Development, 1990, 4, 806-821.	5.9	35
31	Twenty Drosophila visual system cDNA clones: one is a homolog of human arrestin Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1008-1012.	7.1	112
32	Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific. Nature, 1988, 333, 779-782.	27.8	158
33	Molecular characterization and expression of sevenless, a gene involved in neuronal pattern formation in the Drosophila eye. Cell, 1987, 49, 281-291.	28.9	166
34	Electrophoretic analysis of proteins from night-blind mutants of Phycomyces. Biochemical Genetics, 1985, 23, 379-390.	1.7	6
35	Analysis of microsomal flavoproteins from Phycomyces sporangiophores: Candidates for the blue-light photoreceptor. Planta, 1985, 163, 506-516.	3.2	20
36	A FLAVOPROTEIN IN Phycomyces blakesleeanus WITH SHORT FLUORESCENCE LIFETIME. Photochemistry and Photobiology, 1985, 41, 351-354.	2.5	9

#	Article	IF	CITATIONS
37	Examination of Phycomyces blakesleeanus for nitrate reductase as a possible blue light photoreceptor. Plant Science, 1985, 40, 173-177.	3.6	5
38	Mutants of Phycomyces with enhanced tropisms. Experimental Mycology, 1983, 7, 241-252.	1.6	39