
Andrea Vallati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7667935/publications.pdf Version: 2024-02-01

ΔΝΟΦΕΛ ΥΛΙΙΛΤΙ

#	Article	IF	CITATIONS
1	Selected Papers from the 12th International Conference on Computational Heat and Mass Transfer (ICCHMT2019). Heat Transfer Engineering, 2022, 43, 169-171.	1.2	0
2	Multiobjective optimization of underground power cable systems. Energy, 2021, 215, 119089.	4.5	18
3	Buoyancy-Induced Convection in Water From a Pair of Horizontal Heated Cylinders Enclosed in a Square Cooled Cavity. Heat Transfer Engineering, 2021, 42, 205-214.	1.2	0
4	Experimental and analytical evaluation of a gas-liquid energy storage (GLES) prototype. Energy, 2021, 224, 120061.	4.5	8
5	Effect of mutual radiative exchange between the surfaces of a street canyon on the building thermal energy demand. Energy, 2021, 226, 120346.	4.5	9
6	Experimental investigation about the adoption of high reflectance materials on the envelope cladding on a scaled street canyon. Energy, 2021, 230, 120801.	4.5	9
7	A Numerical Investigation of Flow and Heat Transfer of Laminar Multiple Slot Jets Impinging on Multiple Protruding Heat Sources. Heat Transfer Engineering, 2020, 41, 65-83.	1.2	9
8	Experimental Validation of a Heat Transfer Model in Underground Power Cable Systems. Energies, 2020, 13, 1747.	1.6	18
9	Numerical determination of temperature distribution in heating network. Energy, 2019, 183, 880-891.	4.5	7
10	Low impact energy saving strategies for individual heating systems in a modern residential building: A case study in Rome. Journal of Cleaner Production, 2019, 214, 791-802.	4.6	30
11	Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector. Energy, 2019, 174, 91-96.	4.5	38
12	Thermal performance optimization of the underground power cable system by using a modified Jaya algorithm. International Journal of Thermal Sciences, 2018, 123, 162-180.	2.6	57
13	Buoyancy-Induced Convection of Alumina-Water Nanofluids in Laterally Heated Vertical Slender Cavities. Heat Transfer Engineering, 2018, 39, 1103-1116.	1.2	3
14	Energetical Analysis of Two Different Configurations of a Liquid-Gas Compressed Energy Storage. Energies, 2018, 11, 3405.	1.6	5
15	About the shortwave multiple reflections in an urban street canyon building related to three different European climates. MATEC Web of Conferences, 2018, 240, 05004.	0.1	0
16	Numerical Model for the Characterization of Retro-reflective Materials Behavior in an Urban Street Canyon. Journal of Thermal Science, 2018, 27, 456-462.	0.9	5
17	Impact of shortwave multiple reflections in an urban street canyon on building thermal energy demands. Energy and Buildings, 2018, 174, 77-84.	3.1	24
18	Effects of radiative exchange in an urban canyon on building surfaces' loads and temperatures. Energy and Buildings, 2017, 149, 260-271.	3.1	22

ANDREA VALLATI

#	Article	IF	CITATIONS
19	Study of energy performance and analysis of possible retrofit strategies in a public school building in Rome. , 2017, , .		0
20	Energy retrofit of a non-residential and historic building in Rome. , 2016, , .		2
21	Effects of different building automation systems on the energy consumption for three thermal insulation values of the building envelope. , 2016, , .		15
22	Influence of Street Canyon's Microclimate on the Energy Demand for Space Cooling and Heating of Buildings. Energy Procedia, 2016, 101, 941-947.	1.8	14
23	The performance analysis of a new thermal backfill material for underground power cable system. Applied Thermal Engineering, 2016, 108, 233-250.	3.0	57
24	Numerical study to evaluate the human thermal comfort and the buildings energy demand inside the urban canyon. , 2016, , 403-406.		0
25	Energy and Thermodynamical Study of a Small Innovative Compressed Air Energy Storage System (micro-CAES). Energy Procedia, 2015, 82, 645-651.	1.8	25
26	On the Impact of Urban Micro Climate on the Energy Consumption of Buildings. Energy Procedia, 2015, 82, 506-511.	1.8	31
27	Photovoltaics Noise Barrier: Acoustic and Energetic Study. Energy Procedia, 2015, 82, 716-723.	1.8	16
28	Mobile Platform of SRF Production and Electricity and Heat Generation. Energy Procedia, 2015, 82, 841-847.	1.8	3
29	Analysis of thermal field within an urban canyon with variable thermophysical characteristics of the building's walls. Journal of Physics: Conference Series, 2015, 655, 012056.	0.3	17
30	A New Method to Energy Saving in a Micro Grid. Sustainability, 2015, 7, 13904-13919.	1.6	17
31	CFD Analysis of Convective Heat Transfer Coefficient on External Surfaces of Buildings. Sustainability, 2015, 7, 9088-9099.	1.6	39
32	Applications of Micro-CAES Systems: Energy and Economic Analysis. Energy Procedia, 2015, 82, 797-804.	1.8	28
33	Energy study of a non-residential and historic building in transient conditions. , 2015, , .		0
34	Numerical Study of Urban Canyon Microclimate Related to Geometrical Parameters. Sustainability, 2014, 6, 7894-7905.	1.6	27
35	CFD modeling of the impact of solar radiation in a tridimensional urban canyon at different wind conditions. Solar Energy, 2014, 102, 212-222.	2.9	43
36	Experimental study of thermal field deriving from an underground electrical power cable buried in non-homogeneous soils. Applied Thermal Engineering, 2014, 62, 390-397.	3.0	51

ANDREA VALLATI

#	Article	IF	CITATIONS
37	Numerical simulation of coupled heat, liquid water and water vapor in soils for heat dissipation of underground electrical power cables. Applied Thermal Engineering, 2014, 70, 510-523.	3.0	75
38	Fluid dynamic and heat transfer parameters in an urban canyon. Solar Energy, 2014, 99, 1-10.	2.9	50
39	Evaluation of the Acoustic Environment of a Neighborhood and Application of the DPSIR. Advanced Materials Research, 2013, 664, 42-47.	0.3	1
40	Improving evaluation of the heat losses from arrays of pipes or electric cables buried in homogeneous soil. Applied Thermal Engineering, 2011, 31, 3768-3773.	3.0	24
41	Thermal analysis of underground electrical power cables buried in non-homogeneous soils. Applied Thermal Engineering, 2011, 31, 772-778.	3.0	67
42	Numerical analysis and measures for the evaluation of comfort inside buses used for public transport. WIT Transactions on the Built Environment, 2008, , .	0.0	2
43	A study of the influence of the vegetation on the climatic conditions in an urban environment. WIT Transactions on Ecology and the Environment, 2007, , .	0.0	0
44	Turbulent Air Flow Characteristics in a Ventilated Hospital Railway Coach. International Journal of Ventilation, 2003, 2, 23-31.	0.2	1
45	Thermal Characteristics of Urban Surface Materials. Advanced Materials Research, 0, 629, 443-447.	0.3	0
46	Differents Methods to Estimate the Mean Radiant Temperature in an Urban Canyon. Advanced Materials Research, 0, 650, 647-651.	0.3	22
47	Study of a Model for the Evaluation of the Heat Losses from Electric Cables Buried According to the Norm Standard, Advanced Materials Research, 0, 650, 437-442	0.3	4