List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7667906/publications.pdf Version: 2024-02-01

Ιινίνιν Υπλη

#	Article	IF	CITATIONS
1	Colloidal dispersion of poly(ionic liquid)/Cu composite particles for protective surface coating against SARâ€CoVâ€2. Nano Select, 2022, 3, 227-232.	3.7	9
2	Nanodancing with Moisture: Humidityâ€Sensitive Bilayer Actuator Derived from Cellulose Nanofibrils and Reduced Graphene Oxide. Advanced Intelligent Systems, 2022, 4, 2100084.	6.1	15
3	A Cationâ€Methyleneâ€Phenyl Sequence Encodes Programmable Poly(Ionic Liquid) Coacervation and Robust Underwater Adhesion. Advanced Functional Materials, 2022, 32, 2105464.	14.9	35
4	Siloxane-Based Main-Chain Poly(ionic liquid)s <i>via</i> a Debus–Radziszewski Reaction. ACS Polymers Au, 2022, 2, 80-87.	4.1	3
5	Bridged Carbon Fabric Membrane with Boosted Performance in AC Lineâ€Filtering Capacitors. Advanced Science, 2022, 9, e2105072.	11.2	10
6	Impact of Pore Structure on Twoâ€Electron Oxygen Reduction Reaction in Nitrogenâ€Doped Carbon Materials: Rotating Ringâ€Disk Electrode vs. Flow Cell. ChemSusChem, 2022, 15, e202102587.	6.8	9
7	Electrostatically cooperative host-in-host of metal cluster âŠ, ionic organic cages in nanopores for enhanced catalysis. Nature Communications, 2022, 13, 1471.	12.8	14
8	Fully Biobased Photothermal Films and Coatings for Indoor Ultraviolet Radiation and Heat Management. ACS Applied Materials & Interfaces, 2022, 14, 12693-12702.	8.0	21
9	A Knitting Copolymerization Strategy to Build Porous Polytriazolium Salts for Removal of Anionic Dyes and MnO ₄ ^{â^'} . Macromolecular Rapid Communications, 2022, 43, e2200170.	3.9	4
10	Poly(ionic liquid)â€Armored MXene Membrane: Interlayer Engineering for Facilitated Water Transport. Angewandte Chemie, 2022, 134, .	2.0	4
11	Poly(ionic liquid)â€Armored MXene Membrane: Interlayer Engineering for Facilitated Water Transport. Angewandte Chemie - International Edition, 2022, 61, e202202515.	13.8	27
12	Poly(ionic liquid) Nanovesicle-Templated Carbon Nanocapsules Functionalized with Uniform Iron Nitride Nanoparticles as Catalytic Sulfur Host for Li–S Batteries. ACS Nano, 2022, 16, 10554-10565.	14.6	18
13	Vacancyâ€Rich MXeneâ€Immobilized Ni Single Atoms as a Highâ€Performance Electrocatalyst for the Hydrazine Oxidation Reaction. Advanced Materials, 2022, 34, .	21.0	57
14	Hydrazineâ€Enabled Oneâ€5tep Synthesis of Metal Nanoparticle–Functionalized Gradient Porous Poly(ionic liquid) Membranes. Macromolecular Rapid Communications, 2021, 42, 2000143.	3.9	9
15	From wood to thin porous carbon membrane: Ancient materials for modern ultrafast electrochemical capacitors in alternating current line filtering. Energy Storage Materials, 2021, 35, 327-333.	18.0	25
16	Ultratough and ultrastrong graphene oxide hybrid films <i>via</i> a polycationitrile approach. Nanoscale Horizons, 2021, 6, 341-347.	8.0	6
17	Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy and Environmental Science, 2021, 14, 5330-5338.	30.8	122
18	Template-synthesis of a poly(ionic liquid)-derived Fe _{1â^'x} S/nitrogen-doped porous carbon membrane and its electrode application in lithium–sulfur batteries. Materials Advances, 2021, 2, 5203-5212.	5.4	8

#	Article	IF	CITATIONS
19	A transport channel-regulated MXene membrane <i>via</i> organic phosphonic acids for efficient water permeation. Chemical Communications, 2021, 57, 6245-6248.	4.1	17
20	Dual-Cationic Poly(ionic liquid)s Carrying 1,2,4-Triazolium and Imidazolium Moieties: Synthesis and Formation of a Single-Component Porous Membrane. ACS Macro Letters, 2021, 10, 161-166.	4.8	7
21	A General Carboxylateâ€Assisted Approach to Boost the ORR Performance of ZIFâ€Derived Fe/N/C Catalysts for Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2021, 31, 2009645.	14.9	98
22	"Mix-Then-On-Demand-Complexâ€e <i>In Situ</i> Cascade Anionization and Complexation of Graphene Oxide for High-Performance Nanofiltration Membranes. ACS Nano, 2021, 15, 4440-4449.	14.6	26
23	Reduced Graphene Oxide-Poly (Ionic Liquid) Composite Films of High Mechanical Performance. Frontiers in Materials, 2021, 8, .	2.4	2
24	Tuning the glass transition of siloxaneâ€based poly(ionic liquid)s towards high ion conductivity. Journal of Polymer Science, 2021, 59, 1518-1527.	3.8	5
25	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie, 2021, 133, 14243-14249.	2.0	4
26	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie - International Edition, 2021, 60, 14124-14130.	13.8	30
27	Multitasking tartaric-acid-enabled, highly conductive, and stable MXene/conducting polymer composite for ultrafast supercapacitor. Cell Reports Physical Science, 2021, 2, 100449.	5.6	19
28	Smart Sand by Surface Engineering: Toward Controllable Oil/Water Separation. Industrial & Engineering Chemistry Research, 2021, 60, 9475-9481.	3.7	7
29	Ferroceneâ€Containing Porous Poly(Ionic Liquid) Membranes: Synthesis and Application as Sacrificial Template for Porous Iron Oxide Films. Macromolecular Rapid Communications, 2021, 42, e2100077.	3.9	5
30	Generation Pathway of Hydroxyl Radical in Fe/N/C-Based Oxygen Reduction Electrocatalysts under Acidic Media. Journal of Physical Chemistry Letters, 2021, 12, 7797-7803.	4.6	17
31	Ionic organic cage-encapsulated metal clusters for switchable catalysis. Cell Reports Physical Science, 2021, 2, 100546.	5.6	16
32	A Mild CO ₂ Etching Method To Tailor the Pore Structure of Platinum-Free Oxygen Reduction Catalysts in Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 45661-45669.	8.0	17
33	Electroanalysis of Biomolecules: Rational Selection of Sensor Construction. Biochemistry (Moscow), 2021, 86, S140-S151.	1.5	7
34	One-pot construction of nitrogen-rich polymeric ionic porous networks for effective CO ₂ capture and fixation. Polymer Chemistry, 2021, 13, 121-129.	3.9	3
35	Ferrocene-integrated conjugated microporous polymer nanosheets: Active and regenerative catalysts for photomediated controlled radical polymerization. Applied Materials Today, 2020, 18, 100507.	4.3	6
36	Advanced Heteroatom-Doped Porous Carbon Membranes Assisted by Poly(ionic liquid) Design and Engineering. Accounts of Materials Research, 2020, 1, 16-29.	11.7	24

#	Article	IF	CITATIONS
37	Biomimetic Antigravity Water Transport and Remote Harvesting Powered by Sunlight. Global Challenges, 2020, 4, 2000043.	3.6	9
38	A cationitrile sequence encodes mild poly(ionic liquid) crosslinking for advanced composite membranes. Materials Horizons, 2020, 7, 2683-2689.	12.2	32
39	Hydrazine Oxidation Reaction: Porous Carbon Membraneâ€Supported Atomically Dispersed Pyrroleâ€Type FeN ₄ as Active Sites for Electrochemical Hydrazine Oxidation Reaction (Small 31/2020). Small, 2020, 16, 2070171.	10.0	2
40	Nano-confinement-inspired metal organic framework/polymer composite separation membranes. Journal of Materials Chemistry A, 2020, 8, 17212-17218.	10.3	18
41	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	2.2	69
42	Accelerating Crystallization of Open Organic Materials by Poly(ionic liquid)s. Angewandte Chemie - International Edition, 2020, 59, 22109-22116.	13.8	37
43	Polymer-Derived Heteroatom-Doped Porous Carbon Materials. Chemical Reviews, 2020, 120, 9363-9419.	47.7	492
44	Accelerating Crystallization of Open Organic Materials by Poly(ionic liquid)s. Angewandte Chemie, 2020, 132, 22293-22300.	2.0	9
45	Synthetic advances of internally nanostructured polymer particles: From and beyond block copolymer. Nano Select, 2020, 1, 639-658.	3.7	6
46	Thin Porous Poly(ionic liquid) Coatings for Enhanced Headspace Solid Phase Microextraction. Polymers, 2020, 12, 1909.	4.5	9
47	Cryo-Electron microscopy for the study of self-assembled poly(ionic liquid) nanoparticles and protein supramolecular structures. Colloid and Polymer Science, 2020, 298, 707-717.	2.1	13
48	Porous Carbon Membrane‣upported Atomically Dispersed Pyrroleâ€Type FeN ₄ as Active Sites for Electrochemical Hydrazine Oxidation Reaction. Small, 2020, 16, e2002203.	10.0	34
49	The Effect of Phenyl Substitutions on Microstructures and Dynamics of Tetraalkylphosphonium Bis(trifluoro―methylsulfonyl)imide Ionic Liquids. ChemPhysChem, 2020, 21, 1202-1214.	2.1	3
50	β yclodextrinâ€derived Room Temperature Macromolecular Ionic Liquids by PEGylated Anions. Macromolecular Rapid Communications, 2020, 41, e1900576.	3.9	4
51	Crosslinking of a Single Poly(ionic liquid) by Water into Porous Supramolecular Membranes. Angewandte Chemie, 2020, 132, 17340-17344.	2.0	2
52	Crosslinking of a Single Poly(ionic liquid) by Water into Porous Supramolecular Membranes. Angewandte Chemie - International Edition, 2020, 59, 17187-17191.	13.8	27
53	Hydrogen bonding and charge transport in a protic polymerized ionic liquid. Soft Matter, 2020, 16, 6091-6101.	2.7	13
54	Poly(ionic liquid) composites. Chemical Society Reviews, 2020, 49, 1726-1755.	38.1	234

#	Article	IF	CITATIONS
55	Microporous organic polymers as CO2 adsorbents: advances and challenges. Materials Today Advances, 2020, 6, 100052.	5.2	42
56	Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chemical Reviews, 2020, 120, 5798-5877.	47.7	277
57	Poly(ionic liquid)s with engineered nanopores for energy and environmental applications. Polymer, 2020, 202, 122640.	3.8	39
58	Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells. Angewandte Chemie - International Edition, 2019, 58, 13466-13471.	13.8	99
59	Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells. Angewandte Chemie, 2019, 131, 13600-13605.	2.0	32
60	Fine tuning the hydrophobicity of counterâ€anions to tailor pore size in porous allâ€poly(ionic liquid) membranes. Polymer International, 2019, 68, 1566-1569.	3.1	11
61	In Focus: Poly(ionic liquid)s in Polymer Science and Engineering at the Fall 2018 American Chemical Society National Meeting. Polymer International, 2019, 68, 1545-1546.	3.1	0
62	Poly(Ionic Liquid)-Derived Graphitic Nanoporous Carbon Membrane Enables Superior Supercapacitive Energy Storage. ACS Nano, 2019, 13, 10261-10271.	14.6	46
63	Linear Main-Chain 1,2,4-Triazolium Poly(ionic liquid)s: Single-Step Synthesis and Stabilization of Cellulose Nanocrystals. ACS Macro Letters, 2019, 8, 1372-1377.	4.8	8
64	lonic organic cage-encapsulating phase-transferable metal clusters. Chemical Science, 2019, 10, 1450-1456.	7.4	42
65	Poly(Ionic Liquid) Nanoparticles Selectively Disrupt Biomembranes. Advanced Science, 2019, 6, 1801602.	11.2	14
66	Templated synthesis of cyclic poly(ionic liquid)s. Reactive and Functional Polymers, 2019, 138, 1-8.	4.1	10
67	Organic Moleculeâ€Driven Polymeric Actuators. Macromolecular Rapid Communications, 2019, 40, e1800896.	3.9	17
68	Long-term stable poly(ionic liquid)/MWCNTs inks enable enhanced surface modification for electrooxidative detection and quantification of dsDNA. Polymer, 2019, 168, 95-103.	3.8	32
69	Thermo-sensitive Microgels Supported Gold Nanoparticles as Temperature-mediated Catalyst. Chinese Journal of Polymer Science (English Edition), 2019, 37, 235-242.	3.8	18
70	Poly(ionic liquid)s: Platform for CO2 capture and catalysis. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 39-46.	5.9	47
71	Poly(ionic liquid)â€Derived Nâ€Doped Carbons with Hierarchical Porosity for Lithium―and Sodiumâ€ŀon Batteries. Macromolecular Rapid Communications, 2019, 40, e1800545.	3.9	23
72	Reprocessable porous poly(ionic liquid) membranes derived from main-chain polyimidazolium. European Polymer Journal, 2018, 103, 214-219.	5.4	14

#	Article	IF	CITATIONS
73	Interactions of Poly(Ionic Liquid) Nanoparticles with Giant Unilamellar Vesicles. Biophysical Journal, 2018, 114, 99a-100a.	0.5	0
74	In situ μ-printed optical fiber-tip CO2 sensor using a photocrosslinkable poly(ionic liquid). Sensors and Actuators B: Chemical, 2018, 259, 833-839.	7.8	62
75	Poly(ionic liquid) binders as ionic conductors and polymer electrolyte interfaces for enhanced electrochemical performance of water splitting electrodes. Sustainable Energy and Fuels, 2018, 2, 1446-1451.	4.9	15
76	"Cooking carbon in a solid salt― Synthesis of porous heteroatom-doped carbon foams for enhanced organic pollutant degradation under visible light. Applied Materials Today, 2018, 12, 168-176.	4.3	19
77	Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring. Nature Communications, 2018, 9, 1717.	12.8	42
78	Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angewandte Chemie - International Edition, 2018, 57, 6754-6773.	13.8	122
79	Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen. Angewandte Chemie, 2018, 130, 6868-6889.	2.0	10
80	Rücktitelbild: Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen (Angew. Chem. 23/2018). Angewandte Chemie, 2018, 130, 7064-7064.	2.0	0
81	All-Poly(ionic liquid) Membrane-Derived Porous Carbon Membranes: Scalable Synthesis and Application for Photothermal Conversion in Seawater Desalination. ACS Nano, 2018, 12, 11704-11710.	14.6	104
82	Precise Micropatterning of a Porous Poly(ionic liquid) <i>via</i> Maskless Photolithography for High-Performance Nonenzymatic H ₂ O ₂ Sensing. ACS Nano, 2018, 12, 12551-12557.	14.6	26
83	Three birds, one stone – photo-/piezo-/chemochromism in one conjugated nanoporous ionic organic network. Journal of Materials Chemistry C, 2018, 6, 9065-9070.	5.5	15
84	One-pot synthesis of an ionic porous organic framework for metal-free catalytic CO2 fixation under ambient conditions. Chemical Engineering Journal, 2018, 350, 867-871.	12.7	51
85	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie, 2018, 130, 12540-12544.	2.0	14
86	Innenrücktitelbild: Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering (Angew. Chem. 38/2018). Angewandte Chemie, 2018, 130, 12765-12765.	2.0	0
87	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie - International Edition, 2018, 57, 12360-12364.	13.8	160
88	Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment. Polymer International, 2017, 66, 1119-1128.	3.1	42
89	Plants to Polyelectrolytes: Theophylline Polymers and Their Microsphere Synthesis. Macromolecular Rapid Communications, 2017, 38, 1600748.	3.9	5
90	Hierarchically Arranged Helical Fiber Actuators Derived from Commercial Cloth. Advanced Materials, 2017, 29, 1605103.	21.0	51

#	Article	IF	CITATIONS
91	Efficient Electrocatalytic Reduction of CO ₂ by Nitrogenâ€Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO ₂ Refinery. Angewandte Chemie - International Edition, 2017, 56, 7847-7852.	13.8	252
92	Molecular Dynamics and Charge Transport in Highly Conductive Polymeric Ionic Liquids. Macromolecules, 2017, 50, 4022-4029.	4.8	33
93	Poly(Ionic Liquid)â€Derived Carbon with Siteâ€Specific Nâ€Doping and Biphasic Heterojunction for Enhanced CO ₂ Capture and Sensing. Angewandte Chemie - International Edition, 2017, 56, 7557-7563.	13.8	119
94	Poly(Ionic Liquid)â€Derived Carbon with Siteâ€Specific Nâ€Doping and Biphasic Heterojunction for Enhanced CO ₂ Capture and Sensing. Angewandte Chemie, 2017, 129, 7665-7671.	2.0	27
95	General Synthetic Route toward Highly Dispersed Metal Clusters Enabled by Poly(ionic liquid)s. Journal of the American Chemical Society, 2017, 139, 8971-8976.	13.7	110
96	A tale of two membranes: from poly (ionic liquid) to metal–organic framework hybrid nanoporous membranes <i>via</i> pseudomorphic replacement. Materials Horizons, 2017, 4, 681-687.	12.2	39
97	Efficient Electrocatalytic Reduction of CO ₂ by Nitrogenâ€Đoped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO ₂ Refinery. Angewandte Chemie, 2017, 129, 7955-7960.	2.0	78
98	Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments. ACS Nano, 2017, 11, 4358-4364.	14.6	199
99	Flexible and Actuating Nanoporous Poly(Ionic Liquid)–Paper-Based Hybrid Membranes. ACS Applied Materials & Interfaces, 2017, 9, 15148-15155.	8.0	44
100	Main hain Polyimidazolium Polymers by Oneâ€Pot Synthesis and Application as Nitrogenâ€Doped Carbon Precursors. Macromolecular Chemistry and Physics, 2017, 218, 1600586.	2.2	19
101	Main-chain poly(ionic liquid)-derived nitrogen-doped micro/mesoporous carbons for CO 2 capture and selective aerobic oxidation of alcohols. Applied Materials Today, 2017, 7, 159-168.	4.3	42
102	Covalent Cross-Linking of Porous Poly(ionic liquid) Membrane via a Triazine Network. ACS Macro Letters, 2017, 6, 1-5.	4.8	29
103	Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. Nature Communications, 2017, 8, 13592.	12.8	142
104	Lightweight, Room-Temperature CO ₂ Gas Sensor Based on Rare-Earth Metal-Free Composites—An Impedance Study. ACS Applied Materials & Interfaces, 2017, 9, 25553-25558.	8.0	46
105	Polytriazolium poly(ionic liquid) bearing triiodide anions: Synthesis, basic properties and electrochemical behaviors. Polymer, 2017, 124, 246-251.	3.8	16
106	Synthesis of porous polymer/tissue paper hybrid membranes for switchable oil/water separation. Scientific Reports, 2017, 7, 3101.	3.3	21
107	Stable Covalently Photo rosslinked Poly(Ionic Liquid) Membrane with Gradient Pore Size. Macromolecular Rapid Communications, 2017, 38, 1700167.	3.9	10
108	Click-based porous cationic polymers for enhanced carbon dioxide capture. Journal of Materials Chemistry A, 2017, 5, 372-383.	10.3	60

#	Article	IF	CITATIONS
109	Programmable Actuation of Porous Poly(Ionic Liquid) Membranes by Aligned Carbon Nanotubes. Advanced Materials Interfaces, 2017, 4, 1600768.	3.7	35
110	Ionic Liquids and Poly(ionic liquid)s for Morphosynthesis of Inorganic Materials. Chemistry - A European Journal, 2017, 23, 5391-5403.	3.3	72
111	Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air. International Journal of Molecular Sciences, 2016, 17, 532.	4.1	9
112	Poly(1â€Vinylâ€1,2,4â€triazolium) Poly(Ionic Liquid)s: Synthesis and the Unique Behavior in Loading Metal Ions. Macromolecular Rapid Communications, 2016, 37, 1124-1129.	3.9	34
113	From Filter Paper to Functional Actuator by Poly(Ionic Liquid)â€Modified Graphene Oxide. Advanced Materials Interfaces, 2016, 3, 1500743.	3.7	27
114	Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s: hierarchical pore structures for efficient CO ₂ capture and dye removal. Journal of Materials Chemistry A, 2016, 4, 7313-7321.	10.3	157
115	Lower critical solution temperature (LCST) phase behaviour of an ionic liquid and its control by supramolecular host–guest interactions. Chemical Communications, 2016, 52, 7970-7973.	4.1	43
116	Universal mass spectrometric analysis of poly(ionic liquid)s. Chemical Science, 2016, 7, 4912-4921.	7.4	16
117	Construction of a pillar[6]arene based water-soluble supramolecular pseudopolyrotaxane driven by cucurbit[8]uril-enhanced I€â€"I€ interaction. Chemical Communications, 2016, 52, 12510-12512.	4.1	28
118	Nanoporous ionic organic networks: from synthesis to materials applications. Chemical Society Reviews, 2016, 45, 6627-6656.	38.1	152
119	Internal Morphology-Controllable Self-Assembly in Poly(Ionic Liquid) Nanoparticles. ACS Nano, 2016, 10, 7731-7737.	14.6	64
120	Magnetic Poly(Ionic Liquid) Microcapsules for Oil Capture and Recovery. Particle and Particle Systems Characterization, 2016, 33, 734-739.	2.3	15
121	Ionic Liquids in Polymer Design. Macromolecular Rapid Communications, 2016, 37, 1105-1105.	3.9	6
122	Poly(ionic liquid)â€Mediated Morphogenesis of Bismuth Sulfide with a Tunable Band Gap and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2016, 55, 12812-12816.	13.8	34
123	Crosslinked 1,2,4-triazolium-type poly(ionic liquid) nanoparticles. Polymer, 2016, 107, 509-516.	3.8	17
124	Poly(ionic liquid)â€Mediated Morphogenesis of Bismuth Sulfide with a Tunable Band Gap and Enhanced Electrocatalytic Properties. Angewandte Chemie, 2016, 128, 13004-13008.	2.0	10
125	Unexpected LCST-type phase behaviour of a poly(vinyl thiazolium) polymer in acetone. RSC Advances, 2016, 6, 57117-57121.	3.6	8
126	Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 29628-29636.	8.0	37

#	Article	IF	CITATIONS
127	Harnessing Poly(ionic liquid)s for Sensing Applications. Macromolecular Rapid Communications, 2016, 37, 1106-1115.	3.9	37

$128 Controlled radical polymerization and in-depth mass-spectrometric characterization of poly(ionic) Tj ETQq0 0 0 rg B_{3,9}^T Overloc_{38}^{b} 10 Tf 50$

129	Heterophase Photocatalysts from Waterâ€Soluble Conjugated Polyelectrolytes: An Example of Selfâ€Initiation under Visible Light. Angewandte Chemie - International Edition, 2015, 54, 14549-14553.	13.8	80
130	Nitrogen-Doped Carbon Electrodes: Influence of Microstructure and Nitrogen Configuration on the Electrical Conductivity of Carbonized Polyacrylonitrile and Poly(ionic liquid) Blends. Macromolecular Chemistry and Physics, 2015, 216, 1930-1944.	2.2	49
131	Porous Membranes Built Up from Hydrophilic Poly(ionic liquid)s. Macromolecular Rapid Communications, 2015, 36, 2176-2180.	3.9	30
132	Thermoresponsive polyelectrolytes derived from ionic liquids. Polymer Chemistry, 2015, 6, 2163-2178.	3.9	184
133	Novel polyvinylimidazolium nanoparticles as high-performance binders for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 7229-7234.	10.3	39
134	Polyvinylpyridinium-type gradient porous membranes: synthesis, actuation and intrinsic cell growth inhibition. Polymer Chemistry, 2015, 6, 4855-4858.	3.9	23
135	Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization. RSC Advances, 2015, 5, 103494-103505.	3.6	6
136	Thiazolium Poly(ionic liquid)s: Synthesis and Application as Binder for Lithium-Ion Batteries. ACS Macro Letters, 2015, 4, 1312-1316.	4.8	70
137	Microstructure replication of complex biostructures via poly(ionic liquid)-assisted carbonization. Journal of Materials Chemistry A, 2015, 3, 5778-5782.	10.3	6
138	When Nanoparticles Meet Poly(Ionic Liquid)s: Chemoresistive CO ₂ Sensing at Room Temperature. Advanced Functional Materials, 2015, 25, 2537-2542.	14.9	85
139	Conducting, Self-Assembled, Nacre-Mimetic Polymer/Clay Nanocomposites. ACS Applied Materials & Interfaces, 2015, 7, 15681-15685.	8.0	44
140	Poly(ionic liquid)s for enhanced activation of cotton to generate simple and cheap fibrous electrodes for energy applications. Polymer, 2015, 68, 315-320.	3.8	12
141	Sensing Solvents with Ultrasensitive Porous Poly(ionic liquid) Actuators. Advanced Materials, 2015, 27, 2913-2917.	21.0	141
142	Poly(ionic liquid) binders as Li ⁺ conducting mediators for enhanced electrochemical performance. RSC Advances, 2015, 5, 85517-85522.	3.6	35
143	Tuning the Pore Size in Gradient Poly(ionic liquid) Membranes by Small Organic Acids. ACS Macro Letters, 2015, 4, 39-42.	4.8	46
144	Poly(ionic liquid) Core Turns Hollow Silica Spheres into Amphiphilic Nanoreactor in Water. Chemistry of Materials, 2015, 27, 127-132.	6.7	32

#	Article	IF	CITATIONS
145	Poly(ionic liquid)-derived nanoporous carbon analyzed by combination of gas physisorption and small-angle neutron scattering. Carbon, 2015, 82, 425-435.	10.3	37
146	Poly(Ionic Liquid)s as Ionic Liquid-Based Innovative Polyelectrolytes. , 2015, , 47-67.		3
147	Thiazolium ontaining Poly(ionic liquid)s and Ionic Polymers. Macromolecular Symposia, 2014, 342, 67-77.	0.7	8
148	Poly(ionic liquid) colloidal particles. Current Opinion in Colloid and Interface Science, 2014, 19, 76-83.	7.4	61
149	Functional mesoporous poly(ionic liquid)-based copolymer monoliths: From synthesis to catalysis and microporous carbon production. Polymer, 2014, 55, 3423-3430.	3.8	82
150	The Colloidal Stabilization of Carbon with Carbon: Carbon Nanobubbles as both Dispersant and Glue for Carbon Nanotubes. Angewandte Chemie - International Edition, 2014, 53, 1062-1066.	13.8	23
151	Polyelectrolyte as Solvent and Reaction Medium. Journal of the American Chemical Society, 2014, 136, 12-15.	13.7	45
152	A pillar[5]arene/imidazolium [2]rotaxane: solvent- and thermo-driven molecular motions and supramolecular gel formation. Chemical Science, 2014, 5, 247-252.	7.4	196
153	Polyfluorene Polyelectrolyte Nanoparticles: Synthesis of Innovative Stabilizers for Heterophase Polymerization. Macromolecular Rapid Communications, 2014, 35, 1925-1930.	3.9	8
154	Salt-confinement enables production of nitrogen-doped porous carbons in an air oven. RSC Advances, 2014, 4, 37714-37720.	3.6	7
155	Poly(ionic liquid)-Derived Functional-Shaped Carbon Nanomaterials. ACS Symposium Series, 2014, , 17-34.	0.5	3
156	A hybrid porous material from a pillar[5]arene and a poly(ionic liquid): selective adsorption of n-alkylene diols. Chemical Communications, 2014, 50, 2595.	4.1	68
157	Poly(ethylene oxide)-b-poly(3-sulfopropyl methacrylate) Block Copolymers for Calcium Phosphate Mineralization and Biofilm Inhibition. Biomacromolecules, 2014, 15, 3901-3914.	5.4	18
158	Thermodynamic Description of the LCST of Charged Thermoresponsive Copolymers. Macromolecules, 2014, 47, 2096-2102.	4.8	47
159	Omnidispersible poly(ionic liquid)-functionalized cellulose nanofibrils: surface grafting and polymer membrane reinforcement. Chemical Communications, 2014, 50, 12486-12489.	4.1	35
160	An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nature Communications, 2014, 5, 4293.	12.8	446
161	Host–guest complexation between 1,4-dipropoxypillar[5]arene and imidazolium-based ionic liquids. RSC Advances, 2014, 4, 35489-35492.	3.6	13
162	Poly(ionic liquid) nanoparticles as novel colloidal template for silica nanocasting. Polymer, 2014, 55, 3415-3422.	3.8	7

#	Article	IF	CITATIONS
163	Thermoresponsive polymerized gemini dicationic ionic liquid. Polymer Chemistry, 2014, 5, 3719.	3.9	47
164	Activated CO ₂ Sorption in Mesoporous Imidazolium-Type Poly(ionic liquid)-Based Polyampholytes. Chemistry of Materials, 2013, 25, 3003-3010.	6.7	88
165	Mesoporous zwitterionic poly(ionic liquid)s: intrinsic complexation and efficient catalytic fixation of CO2. Polymer Chemistry, 2013, 4, 5048.	3.9	44
166	Innentitelbild: Improving Hydrothermal Carbonization by Using Poly(ionic liquid)s (Angew. Chem.) Tj ETQq0 0 0 r	gBT /Over 2.0	ock 10 Tf 50

167	25th Anniversary Article: "Cooking Carbon with Salt†Carbon Materials and Carbonaceous Frameworks from Ionic Liquids and Poly(ionic liquid)s. Advanced Materials, 2013, 25, 5838-5855.	21.0	177
168	Water Dispersible, Highly Graphitic and Nitrogenâ€Doped Carbon Nanobubbles. Small, 2013, 9, 4135-4141.	10.0	36
169	LCSTâ€Type Phase Behavior Induced by Pillar[5]arene/Ionic Liquid Host–Guest Complexation. Advanced Materials, 2013, 25, 6864-6867.	21.0	113
170	Low fractions of ionic liquid or poly(ionic liquid) can activate polysaccharide biomass into shaped, flexible and fire-retardant porous carbons. Journal of Materials Chemistry A, 2013, 1, 11887.	10.3	49
171	Doubleâ€Stimuliâ€Responsive Spherical Polymer Brushes with a Poly(ionic liquid) Core and a Thermoresponsive Shell. Macromolecular Rapid Communications, 2013, 34, 1721-1727.	3.9	57
172	Mesoporous nitrogen-doped carbon for copper-mediated Ullmann-type C–O/–N/–S cross-coupling reactions. RSC Advances, 2013, 3, 1890-1895.	3.6	59
173	Organic acids can crosslink poly(ionic liquid)s into mesoporous polyelectrolyte complexes. Polymer Chemistry, 2013, 4, 2432.	3.9	49
174	A novel polymeric precursor for micro/mesoporous nitrogen-doped carbons. Journal of Materials Chemistry A, 2013, 1, 5113.	10.3	60
175	Hierarchically Structured Nanoporous Poly(Ionic Liquid) Membranes: Facile Preparation and Application in Fiber-Optic pH Sensing. Journal of the American Chemical Society, 2013, 135, 5549-5552.	13.7	204
176	Improving Hydrothermal Carbonization by Using Poly(ionic liquid)s. Angewandte Chemie - International Edition, 2013, 52, 6028-6032.	13.8	137
177	Poly(ionic liquid)s: An update. Progress in Polymer Science, 2013, 38, 1009-1036.	24.7	1,110
178	Poly(ionic liquid)-derived nitrogen-doped hollow carbon spheres: synthesis and loading with Fe2O3 for high-performance lithium ion batteries. RSC Advances, 2013, 3, 7979.	3.6	37
179	Cationic Poly(ionic liquid) with Tunable Lower Critical Solution Temperature-Type Phase Transition. ACS Macro Letters, 2013, 2, 456-459.	4.8	114
180	Polymerized Ionic Liquid as Stabilizer in Aqueous Emulsion Polymerization Enables a Hydrophilic–Hydrophobic Transition during Film Formation. Macromolecular Rapid Communications, 2013, 34, 665-671.	3.9	27

#	Article	IF	CITATIONS
181	Iron Nitride and Carbide: from Crystalline Nanoparticles to Stable Aqueous Dispersions. Chemistry of Materials, 2012, 24, 2716-2721.	6.7	36
182	Enhanced Carbon Dioxide Adsorption by a Mesoporous Poly(ionic liquid). ACS Macro Letters, 2012, 1, 1028-1031.	4.8	155
183	Poly(tetrabutylphosphonium 4-styrenesulfonate): a poly(ionic liquid) stabilizer for graphene being multi-responsive. Polymer Chemistry, 2012, 3, 871.	3.9	90
184	Poly(ionic liquid) Complex with Spontaneous Micro-/Mesoporosity: Template-Free Synthesis and Application as Catalyst Support. Journal of the American Chemical Society, 2012, 134, 11852-11855.	13.7	170
185	Double Stimuli-Responsive Copolymer Stabilizers for Multiwalled Carbon Nanotubes. ACS Macro Letters, 2012, 1, 84-87.	4.8	72
186	Crosslinked Poly(ionic liquid) Nanoparticles: Inner Structure, Size, and Morphology. Macromolecular Rapid Communications, 2012, 33, 646-651.	3.9	41
187	Nitrogenâ€Doped Carbon Capsules via Poly(ionic liquid)â€Based Layerâ€byâ€Layer Assembly. Macromolecular Rapid Communications, 2012, 33, 1149-1153.	3.9	37
188	Organic/inorganic hybrid star-shaped block copolymers of poly(l-lactide) and poly(N-isopropylacrylamide) with a polyhedral oligomeric silsesquioxane core: Synthesis and self-assembly. European Polymer Journal, 2012, 48, 720-729.	5.4	40
189	Spherical polymer brushes with vinylimidazolium-type poly(ionic liquid) chains as support for metallic nanoparticles. Polymer, 2012, 53, 43-49.	3.8	69
190	Telechelic Hybrid Poly(acrylic acid)s Containing Polyhedral Oligomeric Silsesquioxane (POSS) and Their Self-Assembly in Water. Macromolecules, 2011, 44, 6891-6898.	4.8	73
191	Nitrogen-doped carbon fibers and membranes by carbonization of electrospun poly(ionic liquid)s. Polymer Chemistry, 2011, 2, 1654.	3.9	79
192	Poly(ionic liquid) Latexes Prepared by Dispersion Polymerization of Ionic Liquid Monomers. Macromolecules, 2011, 44, 744-750.	4.8	153
193	One-dimensional magnetic inorganic–organic hybrid nanomaterials. Chemical Society Reviews, 2011, 40, 640.	38.1	194
194	Self-Assembly of Poly(ionic liquid)s: Polymerization, Mesostructure Formation, and Directional Alignment in One Step. Journal of the American Chemical Society, 2011, 133, 17556-17559.	13.7	157
195	Diversified Applications of Chemically Modified 1,2â€Polybutadiene. Macromolecular Rapid Communications, 2011, 32, 1157-1162.	3.9	17
196	Double hydrophilic diblock copolymers containing a poly(ionic liquid) segment: Controlled synthesis, solution property, and application as carbon precursor. European Polymer Journal, 2011, 47, 772-781.	5.4	106
197	Towards nanoscale composite particles of dual complexity. Journal of Colloid and Interface Science, 2011, 355, 115-123.	9.4	38
198	Poly(ionic liquid)s: Polymers expanding classical property profiles. Polymer, 2011, 52, 1469-1482.	3.8	805

#	Article	IF	CITATIONS
199	Hybrids of Magnetic Nanoparticles with Doubleâ€Hydrophilic Core/Shell Cylindrical Polymer Brushes and Their Alignment in a Magnetic Field. Advanced Functional Materials, 2010, 20, 4182-4189.	14.9	69
200	Biomimetic Mussel Adhesive Inspired Clickable Anchors Applied to the Functionalization of Fe ₃ O ₄ Nanoparticles. Macromolecular Rapid Communications, 2010, 31, 1608-1615.	3.9	60
201	Synthesis, characterization, and bulk crosslinking of polybutadiene-block-poly(2-vinyl) Tj ETQq1 1 0.784314 rgBT	/Qverlock	10 Tf 50 66
202	One-dimensional organic–inorganic hybrid nanomaterials. Polymer, 2010, 51, 4015-4036.	3.8	121
203	Templateâ€directed synthesis of hybrid nanowires and nanorods. Physica Status Solidi (B): Basic Research, 2010, 247, 2436-2450.	1.5	11
204	Water-Soluble Organoâ^'Silica Hybrid Nanotubes Templated by Cylindrical Polymer Brushes. Journal of the American Chemical Society, 2010, 132, 16587-16592.	13.7	131
205	Stimuli-Responsive Organosilica Hybrid Nanowires Decorated with Metal Nanoparticles. Chemistry of Materials, 2010, 22, 2626-2634.	6.7	63
206	<i>In Situ</i> Growth of Catalytic Active Auâ^'Pt Bimetallic Nanorods in Thermoresponsive Coreâ^'Shell Microgels. ACS Nano, 2010, 4, 7078-7086.	14.6	164
207	Ionic Liquid Monomers and Polymers as Precursors of Highly Conductive, Mesoporous, Graphitic Carbon Nanostructures. Chemistry of Materials, 2010, 22, 5003-5012.	6.7	202
208	Undulated Multicompartment Cylinders by the Controlled and Directed Stacking of Polymer Micelles with a Compartmentalized Corona. Angewandte Chemie - International Edition, 2009, 48, 2877-2880.	13.8	118
209	Single-molecular hybrid nano-cylinders: Attaching polyhedral oligomeric silsesquioxane covalently to poly(glycidyl methacrylate) cylindrical brushes. Polymer, 2009, 50, 5933-5939.	3.8	25
210	Structure-Tunable Bidirectional Hybrid Nanowires via Multicompartment Cylinders. Nano Letters, 2009, 9, 2026-2030.	9.1	42
211	Smart Organicâ^'Inorganic Nanohybrids Based on Amphiphilic Block Copolymer Micelles and Functional Silsesquioxane Nanoparticles. Langmuir, 2009, 25, 3407-3417.	3.5	15
212	Template-Directed Synthesis of Hybrid Titania Nanowires within Coreâ^'Shell Bishydrophilic Cylindrical Polymer Brushes. Chemistry of Materials, 2009, 21, 4146-4154.	6.7	53
213	Alignment of Tellurium Nanorods <i>via</i> a Magnetizationâ^'Alignmentâ^' Demagnetization ("MADâ€) Process Assisted by an External Magnetic Field. ACS Nano, 2009, 3, 1441-1450.	14.6	48
214	Manipulating cylindrical polyelectrolyte brushes on the nanoscale by counterions: collapse transition to helical structures. Soft Matter, 2009, 5, 379-384.	2.7	68
215	Polyelectrolyte Stars and Cylindrical Brushes Made by ATRP: New Building Blocks in Nanotechnology. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 17-36.	0.5	1
216	Roomâ€Temperature Growth of Uniform Tellurium Nanorods and the Assembly of Tellurium or Fe ₃ O ₄ Nanoparticles on the Nanorods. Advanced Materials, 2008, 20, 947-952.	21.0	52

#	Article	IF	CITATIONS
217	Cadmium selenide nanowires within core–shell cylindrical polymer brushes: Synthesis, characterization and the double-loading process. Polymer, 2008, 49, 1547-1554.	3.8	56
218	pH and salt responsive poly(N,N-dimethylaminoethyl methacrylate) cylindrical brushes and their quaternized derivatives. Polymer, 2008, 49, 3957-3964.	3.8	148
219	Water-soluble organo-silica hybrid nanowires. Nature Materials, 2008, 7, 718-722.	27.5	217
220	Wormlike Morphology Formation and Stabilization of "Pluronic P123―Micelles by Solubilization of Pentaerythritol Tetraacrylate. Journal of Physical Chemistry B, 2008, 112, 8879-8883.	2.6	28
221	Thermo-Reversible Formation of Wormlike Micelles with a Microphase-Separated Corona from a Semicrystalline Triblock Terpolymer. Macromolecules, 2008, 41, 3235-3242.	4.8	152
222	Linear and Hyperbranched Glycopolymer-Functionalized Carbon Nanotubes:Â Synthesis, Kinetics, and Characterization. Macromolecules, 2007, 40, 1803-1815.	4.8	139
223	Doubleâ€Grafted Cylindrical Brushes: Synthesis and Characterization of Poly(lauryl methacrylate) Brushes. Macromolecular Chemistry and Physics, 2007, 208, 1666-1675.	2.2	53
224	Synthesis of monodispersed CdSe nanocrystals in poly(styrene-alt-maleic anhydride) at room temperature. Materials Research Bulletin, 2003, 38, 1359-1366.	5.2	18
225	Preparation and characterization of polymer-capped CdS nanocrystals. Journal of Physics and Chemistry of Solids, 2003, 64, 455-458.	4.0	60