
René St-Arnaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7667725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 25-Hydroxyvitamin D 1-Alpha-Hydroxylase Gene Maps to the Pseudovitamin D-Deficiency Rickets (PDDR) Disease Locus. Journal of Bone and Mineral Research, 1997, 12, 1552-1559.	3.1	290
2	Modulation of renal Ca2+transport protein genes by dietary Ca2+and 1,25â€dihydroxyvitamin D3in 25hydroxyvitamin D3â€lαâ€hydroxylase knockout mice. FASEB Journal, 2002, 16, 1398-1406.	0.2	228
3	Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. Journal of Cell Biology, 2003, 162, 139-148.	2.3	212
4	Increased Expression of the c-fosProto-Oncogene in Bone from Patients with Fibrous Dysplasia. New England Journal of Medicine, 1995, 332, 1546-1551.	13.9	166
5	Altered Pharmacokinetics of 1α,25-Dihydroxyvitamin D3and 25-Hydroxyvitamin D3in the Blood and Tissues of the 25-Hydroxyvitamin D-24-Hydroxylase (Cyp24a1) Null Mouse. Endocrinology, 2005, 146, 825-834.	1.4	160
6	Evidence for Ligand-Dependent Intramolecular Folding of the AF-2 Domain in Vitamin D Receptor-Activated Transcription and Coactivator Interaction. Molecular Endocrinology, 1997, 11, 1507-1517.	3.7	145
7	Genetic Ablation of Vitamin D Activation Pathway Reverses Biochemical and Skeletal Anomalies in Fgf-23-Null Animals. American Journal of Pathology, 2006, 169, 2161-2170.	1.9	139
8	The direct role of vitamin D on bone homeostasis. Archives of Biochemistry and Biophysics, 2008, 473, 225-230.	1.4	137
9	Rescue of the Pseudo-Vitamin D Deficiency Rickets Phenotype of CYP27B1-Deficient Mice by Treatment With 1,25-Dihydroxyvitamin D3: Biochemical, Histomorphometric, and Biomechanical Analyses. Journal of Bone and Mineral Research, 2003, 18, 637-643.	3.1	99
10	Vitamin D metabolism, cartilage and bone fracture repair. Molecular and Cellular Endocrinology, 2011, 347, 48-54.	1.6	79
11	CYP24A1-deficient mice as a tool to uncover a biological activity for vitamin D metabolites hydroxylated at position 24. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 254-256.	1.2	74
12	Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2. Journal of Clinical Investigation, 2018, 128, 3546-3557.	3.9	56
13	FIAT represses ATF4-mediated transcription to regulate bone mass in transgenic mice. Journal of Cell Biology, 2005, 169, 591-601.	2.3	54
14	Characterizing the BMP pathway in a wild type mouse model of distraction osteogenesis. Bone, 2008, 42, 1144-1153.	1.4	53
15	Differential Stimulation of Fos and Jun Family Members by Calcitriol in Osteoblastic Cells. Molecular Endocrinology, 1991, 5, 1780-1788.	3.7	49
16	CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. Journal of Clinical Investigation, 2016, 126, 667-680.	3.9	49
17	Integrin-linked Kinase Regulates the Nuclear Entry of the c-Jun Coactivator α-NAC and Its Coactivation Potency. Journal of Biological Chemistry, 2004, 279, 43893-43899.	1.6	45
18	Integrin-Linked Kinase Regulates Bone Formation by Controlling Cytoskeletal Organization and Modulating BMP and Wnt Signaling in Osteoprogenitors. Journal of Bone and Mineral Research, 2017, 32, 2087-2102.	3.1	41

René St-Arnaud

#	Article	IF	CITATIONS
19	Conventional and tissue-specific inactivation of the 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). Journal of Cellular Biochemistry, 2003, 88, 245-251.	1.2	40
20	GSK3β-Dependent Phosphorylation of the αNAC Coactivator Regulates Its Nuclear Translocation and Proteasome-Mediated Degradationâ€. Biochemistry, 2004, 43, 2906-2914.	1.2	37
21	Nuclear αNAC Influences Bone Matrix Mineralization and Osteoblast Maturation <i>In Vivo</i> . Molecular and Cellular Biology, 2010, 30, 43-53.	1.1	37
22	Tumoral Vitamin D Synthesis by CYP27B1 1-α-Hydroxylase Delays Mammary Tumor Progression in the PyMT-MMTV Mouse Model and Its Action Involves NF-κB Modulation. Endocrinology, 2016, 157, 2204-2216.	1.4	37
23	Sequence-Specific DNA Binding by the αNAC Coactivator Is Required for Potentiation of c-Jun-Dependent Transcription of the Osteocalcin Gene. Molecular and Cellular Biology, 2005, 25, 3452-3460.	1.1	34
24	Vitamin D–regulated osteocytic sclerostin and BMP2 modulate uremic extraskeletal calcification. JCI Insight, 2019, 4, .	2.3	29
25	Absence of Calcitriol Causes Increased Lactational Bone Loss and Lower Milk Calcium but Does Not Impair Post-lactation Bone Recovery in <i>Cyp27b1</i> Null Mice. Journal of Bone and Mineral Research, 2018, 33, 16-26.	3.1	26
26	Rescue of the phenotype of CYP27B1 (1α-hydroxylase)-deficient mice. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 327-330.	1.2	25
27	Osteoclastâ€specific inactivation of the integrinâ€ŀinked kinase (ILK) inhibits bone resorption. Journal of Cellular Biochemistry, 2010, 110, 960-967.	1.2	25
28	Excess 25-hydroxyvitamin D3 exacerbates tubulointerstitial injury in mice by modulating macrophage phenotype. Kidney International, 2015, 88, 1013-1029.	2.6	25
29	Inhibition of ATF4 Transcriptional Activity by FIAT/Â-Taxilin Modulates Bone Mass Accrual. Annals of the New York Academy of Sciences, 2006, 1068, 131-142.	1.8	24
30	Are Endogenous BMPs Necessary for Bone Healing during Distraction Osteogenesis?. Clinical Orthopaedics and Related Research, 2009, 467, 3190-3198.	0.7	24
31	Hepatic posttranscriptional network comprised of CCR4–NOT deadenylase and FGF21 maintains systemic metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7973-7981.	3.3	21
32	αNAC Requires an Interaction With c-Jun to Exert its Transcriptional Coactivation. Gene Expression, 2002, 10, 255-262.	0.5	21
33	CYP24A1 Exacerbated Activity during Diabetes Contributes to Kidney Tubular Apoptosis via Caspase-3 Increased Expression and Activation. PLoS ONE, 2012, 7, e48652.	1.1	20
34	Calcioic acid: In vivo detection and quantification of the terminal C24-oxidation product of 25-hydroxyvitamin D3 and related intermediates in serum of mice treated with 24,25-dihydroxyvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2019, 188, 23-28.	1.2	20
35	Vitamin D Regulates CXCL12/CXCR4 and Epithelial-to-Mesenchymal Transition in a Model of Breast Cancer Metastasis to Lung. Endocrinology, 2021, 162, .	1.4	20
36	Abnormal Calcium Handling and Exaggerated Cardiac Dysfunction in Mice with Defective Vitamin D Signaling. PLoS ONE, 2014, 9, e108382.	1.1	19

René ST-Arnaud

#	Article	IF	CITATIONS
37	The PTH-Gα _s -Protein Kinase A Cascade Controls αNAC Localization To Regulate Bone Mass. Molecular and Cellular Biology, 2014, 34, 1622-1633.	1.1	18
38	Transcriptional coactivators potentiating AP-1 function in bone. Frontiers in Bioscience - Landmark, 1998, 3, d838-848.	3.0	17
39	Absence of vitamin D receptor in mature osteoclasts results in altered osteoclastic activity and bone loss. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 77-82.	1.2	17
40	Casein Kinase II Phosphorylation Regulates αNAC Subcellular Localization and Transcriptional Coactivating Activity. Gene Expression, 2005, 12, 151-163.	0.5	16
41	FIAT represses bone matrix mineralization by interacting with ATF4 through its second leucine zipper. Journal of Cellular Biochemistry, 2008, 105, 859-865.	1.2	15
42	<i>Cyp24a1</i> Attenuation Limits Progression of <i>BrafV600E</i> -Induced Papillary Thyroid Cancer Cells and Sensitizes Them to BRAFV600E Inhibitor PLX4720. Cancer Research, 2017, 77, 2161-2172.	0.4	15
43	Lrp6 is a target of the PTH-activated αNAC transcriptional coregulator. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 61-71.	0.9	14
44	Dephosphorylation of the transcriptional cofactor NACA by the PP1A phosphatase enhances cJUN transcriptional activity and osteoblast differentiation. Journal of Biological Chemistry, 2019, 294, 8184-8196.	1.6	14
45	Dual functions for transcriptional regulators: Myth or reality?. Journal of Cellular Biochemistry, 1999, 75, 32-40.	1.2	13
46	FIAT is co-expressed with its dimerization target ATF4 in early osteoblasts, but not in osteocytes. Gene Expression Patterns, 2009, 9, 335-340.	0.3	13
47	Combinatorial control of ATF4â€dependent gene transcription in osteoblasts. Annals of the New York Academy of Sciences, 2011, 1237, 11-18.	1.8	13
48	Inactivation of the Integrin-Linked Kinase (ILK) in osteoblasts increases mineralization. Gene, 2014, 533, 246-252.	1.0	12
49	FIAT inhibition increases osteoblast activity by modulating Atf4â€dependent functions. Journal of Cellular Biochemistry, 2009, 106, 186-192.	1.2	11
50	αNAC interacts with histone deacetylase corepressors to control Myogenin and Osteocalcin gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 1208-1216.	0.9	9
51	Control of <i>Fiat</i> (factor inhibiting ATF4â€mediated transcription) expression by Sp family transcription factors in osteoblasts. Journal of Cellular Biochemistry, 2013, 114, 1863-1870.	1.2	9
52	Mineral Homeostasis in Murine Fetuses Is Sensitive to Maternal Calcitriol but Not to Absence of Fetal Calcitriol. Journal of Bone and Mineral Research, 2019, 34, 669-680.	3.1	9
53	Preclinical safety and efficacy of 24R,25-dihydroxyvitamin D3 or lactosylceramide treatment to enhance fracture repair. Journal of Orthopaedic Translation, 2020, 23, 77-88.	1.9	9
54	Ubiquitin specific peptidase Usp53 regulates osteoblast versus adipocyte lineage commitment. Scientific Reports, 2021, 11, 8418.	1.6	9

René ST-Arnaud

2

#	Article	IF	CITATIONS
55	Identification of Additional Dimerization Partners of FIAT, the Factor Inhibiting ATF4-Mediated Transcription. Annals of the New York Academy of Sciences, 2007, 1116, 208-215.	1.8	8
56	Vitamin D supplementation improves bone mineralisation independent of dietary phosphate in male X-linked hypophosphatemic (Hyp) mice. Bone, 2021, 143, 115767.	1.4	8
57	Expression and Role of Ubiquitin-Specific Peptidases in Osteoblasts. International Journal of Molecular Sciences, 2021, 22, 7746.	1.8	8
58	Altered gene dosage confirms the genetic interaction between FIAT and αNAC. Gene, 2014, 538, 328-333.	1.0	7
59	New PTH Signals Mediating Bone Anabolism. Current Molecular Biology Reports, 2017, 3, 133-141.	0.8	7
60	Nfil3, a target of the NACA transcriptional coregulator, affects osteoblast and osteocyte gene expression differentially. Bone, 2020, 141, 115624.	1.4	6
61	FIAT control of osteoblast activity. Journal of Cellular Biochemistry, 2010, 109, 453-459.	1.2	5
62	Vitamin D Biology. , 2012, , 163-187.		5
63	SUMOylated $\hat{I}\pm$ NAC Potentiates Transcriptional Repression by FIAT. Journal of Cellular Biochemistry, 2014, 115, 866-873.	1.2	5
64	Vitamin D Biology. , 2003, , 193-216.		5
65	Novel findings about 24,25-dihydroxyvitamin D: an active metabolite?. Current Opinion in Nephrology and Hypertension, 1999, 8, 435-441.	1.0	5
66	FIAT, the factorâ€inhibiting ATF4â€mediated transcription, also represses the transcriptional activity of the bZIP factor FRAâ€1. Annals of the New York Academy of Sciences, 2010, 1192, 338-343.	1.8	4
67	Inhibition of the catalytic subunit of DNAâ€dependent protein kinase (DNAâ€PKcs) stimulates osteoblastogenesis by potentiating bone morphogenetic protein 2 (BMP2) responses. Journal of Cellular Physiology, 2021, 236, 1195-1213.	2.0	4
68	Vitamin D Hydroxylation–Deficient Rickets, Type 1A. , 2018, , 249-262.		3
69	The ER protein TLC domain 3B2 and its enzymatic product lactosylceramide enhance chondrocyte maturation. Connective Tissue Research, 2021, 62, 176-182.	1.1	3
70	Mutant Mouse Models of Vitamin D Metabolic Enzymes. , 2005, , 105-116.		2
71	Differential Effects of Oral Doxercalciferol (Hectorol®) or Paricalcitol (Zemplar®) in the Cyp27b1-Null Mouse Model of Uremia. Nephron Experimental Nephrology, 2011, 119, e67-e74.	2.4	2

72 Pseudo-vitamin D Deficiency. , 2011, , 1187-1195.

René St-Arnaud

#	Article	IF	CITATIONS
73	Genetic Defects in Vitamin D Metabolism and Action. , 2016, , 1160-1172.e4.		2
74	CYP24A1-deficiency does not affect bone regeneration in distraction osteogenesis. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 168-172.	1.2	2
75	FIAT deletion increases bone mass but does not prevent high-fat-diet-induced metabolic complications. Endocrinology, 2016, 158, en.2016-1867.	1.4	1
76	Depletion of Integrinâ€Linked Kinase (ILK) from Primary Mouse Hepatocytes Leads to Apoptosis. FASEB Journal, 2006, 20, A630.	0.2	0
77	Integrin Linked Kinase Is Important in Platelet Signalling and Function Blood, 2007, 110, 420-420.	0.6	О
78	NACA and LRP6 Are Part of a Common Genetic Pathway Necessary for Full Anabolic Response to Intermittent PTH. International Journal of Molecular Sciences, 2022, 23, 940.	1.8	0