Ryan H Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7667665/publications.pdf

Version: 2024-02-01

686830 752256 28 423 13 citations g-index h-index papers

28 28 28 736 docs citations times ranked citing authors all docs

20

#	Article	IF	CITATIONS
1	Characterization of Hepatic UDP-Glucuronosyltransferase Enzyme Abundance-Activity Correlations and Population Variability Using a Proteomics Approach and Comparison with Cytochrome P450 Enzymes. Drug Metabolism and Disposition, 2021, 49, 760-769.	1.7	7
2	Coexpression of Human Hepatic Uridine Diphosphate Glucuronosyltransferase Proteins: Implications for Ontogenetic Mechanisms and Isoform Coregulation. Journal of Clinical Pharmacology, 2020, 60, 722-733.	1.0	4
3	Human Cytochrome P450 1A1 Adapts Active Site for Atypical Nonplanar Substrate. Drug Metabolism and Disposition, 2020, 48, 86-92.	1.7	17
4	Characterization of Differential Tissue Abundance of Major Non-CYP Enzymes in Human. Molecular Pharmaceutics, 2020, 17, 4114-4124.	2.3	54
5	Regional Proteomic Quantification of Clinically Relevant Non-Cytochrome P450 Enzymes along the Human Small Intestine. Drug Metabolism and Disposition, 2020, 48, 528-536.	1.7	27
6	Advances in the study of drug metabolism – symposium report of the 12th Meeting of the International Society for the Study of Xenobiotics (ISSX). Drug Metabolism Reviews, 2020, 52, 395-407.	1.5	8
7	Novel Homodimer Metabolites of GDC-0994 via Cytochrome P450–Catalyzed Radical Coupling. Drug Metabolism and Disposition, 2020, 48, 521-527.	1.7	5
8	Characterization of the Ontogeny of Hepatic UDPâ€Glucuronosyltransferase Enzymes Based on Glucuronidation Activity Measured in Human Liver Microsomes. Journal of Clinical Pharmacology, 2019, 59, S42-S55.	1.0	26
9	Unequal Absorption of Radiolabeled and Nonradiolabeled Drug from the Oral Dose Leads to Incorrect Estimates of Drug Absorption and Circulating Metabolites in a Mass Balance Study. Drug Metabolism Letters, 2019, 13, 37-44.	0.5	O
10	Characterizing the <i>in vitro</i> species differences in N-glucuronidation of a potent pan-PIM inhibitor GNE-924 containing a 3,5-substituted 6-azaindazole. Xenobiotica, 2018, 48, 1021-1027.	0.5	1
11	Development of a mass spectrometry-based tryptophan 2, 3-dioxygenase assay using liver cytosol from multiple species. Analytical Biochemistry, 2018, 556, 85-90.	1.1	3
12	Absorption, metabolism and excretion of cobimetinib, an oral MEK inhibitor, in rats and dogs. Xenobiotica, 2017, 47, 50-65.	0.5	5
13	Novel Mechanism of Decyanation of GDC-0425 by Cytochrome P450. Drug Metabolism and Disposition, 2017, 45, 430-440.	1.7	8
14	Utility of CYP3A4 and PXR-CAR-CYP3A4/3A7 Transgenic Mouse Models To Assess the Magnitude of CYP3A4 Mediated Drug–Drug Interactions. Molecular Pharmaceutics, 2017, 14, 1754-1759.	2.3	20
15	Applying Stable Isotope Labeled Amino Acids in Micropatterned Hepatocyte Coculture to Directly Determine the Degradation Rate Constant for CYP3A4. Drug Metabolism and Disposition, 2017, 45, 581-585.	1.7	13
16	Structure-Based Design of Tricyclic NF-κB Inducing Kinase (NIK) Inhibitors That Have High Selectivity over Phosphoinositide-3-kinase (PI3K). Journal of Medicinal Chemistry, 2017, 60, 627-640.	2.9	51
17	CYP1A1-Mediated Intramolecular Rearrangement of Aminoazepane in GDC-0339. Drug Metabolism and Disposition, 2017, 45, 1084-1092.	1.7	7
18	Mixed Matrix Method Provides A Reliable Metabolite Exposure Comparison for Assessment of Metabolites in Safety Testing (MIST). Drug Metabolism Letters, 2017, 11, 21-28.	0.5	10

#	ARTICLE	IF	CITATION
19	Elucidating the Mechanisms of Formation for Two Unusual Cytochrome P450–Mediated Fused Ring Metabolites of GDC-0623, a MAPK/ERK Kinase Inhibitor. Drug Metabolism and Disposition, 2015, 43, 1929-1933.	1.7	6
20	Absorption, Metabolism, Excretion, and the Contribution of Intestinal Metabolism to the Oral Disposition of [14C]Cobimetinib, a MEK Inhibitor, in Humans. Drug Metabolism and Disposition, 2015, 44, 28-39.	1.7	37
21	Use of Transgenic Mouse Models to Understand the Oral Disposition and Drug-Drug Interaction Potential of Cobimetinib, a MEK Inhibitor. Drug Metabolism and Disposition, 2015, 43, 864-869.	1.7	19
22	Dose-dependent exposure and metabolism of GNE-892, a \hat{l}^2 -secretase inhibitor, in monkeys: contributions by P450, AO, and P-gp. European Journal of Drug Metabolism and Pharmacokinetics, 2015, 40, 171-185.	0.6	2
23	Investigations into the Mechanisms of Pyridine Ring Cleavage in Vismodegib. Drug Metabolism and Disposition, 2014, 42, 343-351.	1.7	10
24	Elucidating the Mechanism of Cytochrome P450–Mediated Pyrimidine Ring Conversion to Pyrazole Metabolites with the BACE1 Inhibitor GNE-892 in Rats. Drug Metabolism and Disposition, 2014, 42, 890-898.	1.7	10
25	Absorption, Distribution, Metabolism, and Excretion of [14C]GDC-0449 (Vismodegib), an Orally Active Hedgehog Pathway Inhibitor, in Rats and Dogs: A Unique Metabolic Pathway via Pyridine Ring Opening. Drug Metabolism and Disposition, 2011, 39, 952-965.	1.7	14
26	The Effect of Allelic Variation in Aldo-Keto Reductase 1C2 on the in Vitro Metabolism of Dihydrotestosterone. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 1032-1039.	1.3	16
27	Two Allelic Variants of Aldo-Keto Reductase <i>1A1</i> Daunorubicin. Drug Metabolism and Disposition, 2008, 36, 904-910.	1.7	28
28	Aldo-Keto Reductase 1C2 Fails to Metabolize Doxorubicin and Daunorubicin in Vitro. Drug Metabolism and Disposition, 2008, 36, 991-994.	1.7	15