
Elizabeth Lindstad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7667518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimal ship lifetime fuel and power system selection. Transportation Research, Part D: Transport and Environment, 2022, 102, 103145.	6.8	24
2	Ship of the future – A slender dry-bulker with wind assisted propulsion. Maritime Transport Research, 2022, 3, 100055.	3.2	7
3	An economic analysis of introducing autonomous ships in a shortâ€sea liner shipping network. International Transactions in Operational Research, 2021, 28, 1740-1764.	2.7	37
4	The impact of an EU maritime emissions trading system on oil trades. Transportation Research, Part D: Transport and Environment, 2021, 99, 102992.	6.8	21
5	Reduction of maritime GHG emissions and the potential role of E-fuels. Transportation Research, Part D: Transport and Environment, 2021, 101, 103075.	6.8	85
6	Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel. Sustainability, 2020, 12, 8793.	3.2	58
7	LNG and Cruise Ships, an Easy Way to Fulfil Regulations—Versus the Need for Reducing GHG Emissions. Sustainability, 2020, 12, 2080.	3.2	35
8	Analyzing different designs of liner shipping feeder networks: A case study. Transportation Research, Part E: Logistics and Transportation Review, 2020, 134, 101839.	7.4	13
9	The Need to Amend IMO's EEDI to Include a Threshold for Performance in Waves (Realistic Sea) Tj ETQq1 1	0.784314	rgBT ₂₃ /Overloc
10	Potential power setups, fuels and hull designs capable of satisfying future EEDI requirements. Transportation Research, Part D: Transport and Environment, 2018, 63, 276-290.	6.8	41
11	Batteries in offshore support vessels – Pollution, climate impact and economics. Transportation Research, Part D: Transport and Environment, 2017, 50, 409-417.	6.8	31
12	State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review. Transportation Research, Part D: Transport and Environment, 2017, 52, 408-421.	6.8	483
13	Sulphur abatement globally in maritime shipping. Transportation Research, Part D: Transport and Environment, 2017, 57, 303-313.	6.8	99
14	Environmental regulations in shipping: Policies leaning towards globalization of scrubbers deserve scrutiny. Transportation Research, Part D: Transport and Environment, 2016, 47, 67-76.	6.8	76
15	Evaluation of Upstream Logistics System Concepts for Offshore Operations in Remote Areas. , 2016, , .		0
16	Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation. Transport Policy, 2016, 45, 24-30.	6.6	80
17	Opportunities for increased profit and reduced cost and emissions by service differentiation within container liner shipping. Maritime Policy and Management, 2016, 43, 280-294.	3.8	27
18	Emission and Fuel Reduction for Offshore Support Vessels through Hybrid Technology. Journal of Ship Production and Design, 2016, 32, 195-205.	0.4	6

Elizabeth Lindstad

#	Article	IF	CITATIONS
19	Low carbon maritime transport: How speed, size and slenderness amounts to substantial capital energy substitution. Transportation Research, Part D: Transport and Environment, 2015, 41, 244-256.	6.8	62
20	Assessment of cost as a function of abatement options in maritime emission control areas. Transportation Research, Part D: Transport and Environment, 2015, 38, 41-48.	6.8	73
21	Maritime shipping and emissions: A three-layered, damage-based approach. Ocean Engineering, 2015, 110, 94-101.	4.3	69
22	Improving Cost and Fuel Efficiency of Short Sea Ro-Ro Vessels through More Slender Designs - A Feasibility Study. , 2015, , .		0
23	Assessment of profit, cost, and emissions for slender bulk vessel designs. Transportation Research, Part D: Transport and Environment, 2014, 29, 32-39.	6.8	29
24	Emission and Fuel Reductions for Offshore Support Vessels through Hybrid Technologies. , 2014, , .		6
25	Assessment of profit, cost and emissions by varying speed as a function of sea conditions and freight market. Transportation Research, Part D: Transport and Environment, 2013, 19, 5-12.	6.8	51
26	Reductions in cost and greenhouse gas emissions with new bulk ship designs enabled by the Panama Canal expansion. Energy Policy, 2013, 59, 341-349.	8.8	38
27	Assessment of bulk designs enabled by the Panama Canal expansion. , 2013, , .		Ο
28	Information Technology in Maritime Logistics Management: A Case-Based Approach from CoA to SLA. , 2012, , 133-154.		2
29	Green Maritime Logistics and Sustainability. , 2012, , 227-244.		10
30	The importance of economies of scale for reductions in greenhouse gas emissions from shipping. Energy Policy, 2012, 46, 386-398.	8.8	76
31	Reductions in greenhouse gas emissions and cost by shipping at lower speeds. Energy Policy, 2011, 39, 3456-3464.	8.8	217
32	Fleet deployment in liner shipping: a case study. Maritime Policy and Management, 2009, 36, 397-409.	3.8	55
33	TurboRouter: An Interactive Optimisation-Based Decision Support System for Ship Routing and Scheduling. Maritime Economics and Logistics, 2007, 9, 214-233.	4.0	41
34	Sulphur Abatement Globally in Maritime Shipping. SSRN Electronic Journal, 0, , .	0.4	0