
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/766749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. Nature Reviews Materials, 2022, 7, 39-54.	23.3	184
2	Engineering β Cell Replacement Therapies for Type 1 Diabetes: Biomaterial Advances and Considerations for Macroscale Constructs. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 485-513.	9.6	7
3	Surveillance-to-Diagnostic Testing Program for Asymptomatic SARS-CoV-2 Infections on a Large, Urban Campus in Fall 2020. Epidemiology, 2022, 33, 209-216.	1.2	13
4	Bacteriophage‣oaded Poly(lacticâ€ <i>co</i> â€glycolic acid) Microparticles Mitigate <i>Staphylococcus aureus</i> Infection and Cocultures of <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> . Advanced Healthcare Materials, 2022, 11, e2102539.	3.9	8
5	The intersection of fracture healing and infection: Orthopaedics research society workshop 2021. Journal of Orthopaedic Research, 2022, 40, 541-552.	1.2	8
6	Synthetic Matrix Scaffolds Engineer the In Vivo Tumor Immune Microenvironment for Immunotherapy Screening. Advanced Materials, 2022, 34, e2108084.	11.1	13
7	Bob Nerem's The Rules of Life. Regenerative Engineering and Translational Medicine, 2022, 8, 504-505.	1.6	1
8	Analyzing immune response to engineered hydrogels by hierarchical clustering of inflammatory cell subsets. Science Advances, 2022, 8, eabd8056.	4.7	15
9	Hydrolytically Degradable Microgels with Tunable Mechanical Properties Modulate the Host Immune Response. Small, 2022, 18, e2106896.	5.2	14
10	Synthetic hydrogels engineered to promote collecting lymphatic vessel sprouting. Biomaterials, 2022, 284, 121483.	5.7	9
11	FasL microgels induce immune acceptance of islet allografts in nonhuman primates. Science Advances, 2022, 8, eabm9881.	4.7	32
12	Host type 2 immune response to xenogeneic serum components impairs biomaterial-directed osteo-regenerative therapies. Biomaterials, 2022, 286, 121601.	5.7	4
13	A hydrogel platform for coâ€delivery of immunomodulatory proteins for pancreatic islet allografts. Journal of Biomedical Materials Research - Part A, 2022, 110, 1728-1737.	2.1	6
14	Biomaterial strategies for improved intraâ€articular drug delivery. Journal of Biomedical Materials Research - Part A, 2021, 109, 426-436.	2.1	30
15	Toll-like receptor 2-modulating pectin-polymers in alginate-based microcapsules attenuate immune responses and support islet-xenograft survival. Biomaterials, 2021, 266, 120460.	5.7	34
16	JAGGED1 stimulates cranial neural crest cell osteoblast commitment pathways and bone regeneration independent of canonical NOTCH signaling. Bone, 2021, 143, 115657.	1.4	7
17	Localized hydrogel delivery of dendritic cells for attenuation of multiple sclerosis in a murine model. Journal of Biomedical Materials Research - Part A, 2021, 109, 1247-1255.	2.1	11
18	Dual delivery of IL-10 and AT-RvD1 from PEG hydrogels polarize immune cells towards pro-regenerative phenotypes. Biomaterials, 2021, 268, 120475.	5.7	27

#	Article	IF	CITATIONS
19	Microfluidics generation of chitosan microgels containing glycerylphytate crosslinker for in situ human mesenchymal stem cells encapsulation. Materials Science and Engineering C, 2021, 120, 111716.	3.8	18
20	Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomaterialia, 2021, 133, 4-16.	4.1	146
21	Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 2021, 12, 2359.	5.8	27
22	Triple growth factor delivery promotes functional bone regeneration following composite musculoskeletal trauma. Acta Biomaterialia, 2021, 127, 180-192.	4.1	25
23	A Hydrogel Strategy to Augment Tissue Adenosine to Improve Hindlimb Perfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e314-e324.	1.1	3
24	Optoregulated force application to cellular receptors using molecular motors. Nature Communications, 2021, 12, 3580.	5.8	19
25	Highâ€ŧhroughput onâ€chip human mesenchymal stromal cell potency prediction. Advanced Healthcare Materials, 2021, , 2101995.	3.9	4
26	Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. Journal of Biomedical Materials Research - Part A, 2020, 108, 39-49.	2.1	59
27	Brief exposure to hyperglycemia activates dendritic cells in vitro and in vivo. Journal of Cellular Physiology, 2020, 235, 5120-5129.	2.0	7
28	Integrin-specific hydrogels modulate transplanted human bone marrow-derived mesenchymal stem cell survival, engraftment, and reparative activities. Nature Communications, 2020, 11, 114.	5.8	131
29	The Extracellular Matrix and Cell–Biomaterial Interactions. , 2020, , 701-715.		6
30	Articular Cartilage- and Synoviocyte-Binding Poly(ethylene glycol) Nanocomposite Microgels as Intra-Articular Drug Delivery Vehicles for the Treatment of Osteoarthritis. ACS Biomaterials Science and Engineering, 2020, 6, 5084-5095.	2.6	29
31	Immunotherapy via PD-L1–presenting biomaterials leads to long-term islet graft survival. Science Advances, 2020, 6, eaba5573.	4.7	54
32	A blueprint for academic laboratories to produce SARS-CoV-2 quantitative RT-PCR test kits. Journal of Biological Chemistry, 2020, 295, 15438-15453.	1.6	31
33	Material-driven fibronectin assembly rescues matrix defects due to mutations in collagen IV in fibroblasts. Biomaterials, 2020, 252, 120090.	5.7	9
34	Generation of small intestinal organoids for experimental intestinal physiology. Methods in Cell Biology, 2020, 159, 143-174.	0.5	18
35	Robert M. Nerem – International expert on mechanobiology, cellular engineering, tissue engineering and regenerative medicine. Regenerative Therapy, 2020, 15, 34.	1.4	0
36	Desmocollin-2 promotes intestinal mucosal repair by controlling integrin-dependent cell adhesion and migration. Molecular Biology of the Cell, 2020, 31, 407-418.	0.9	26

#	Article	IF	CITATIONS
37	Functionalization of Alginate with Extracellular Matrix Peptides Enhances Viability and Function of Encapsulated Porcine Islets. Advanced Healthcare Materials, 2020, 9, e2000102.	3.9	15
38	Engineered Biomaterials for Enhanced Function of Insulinâ€Secreting βâ€Cell Organoids. Advanced Functional Materials, 2020, 30, 2000134.	7.8	16
39	Hydrodynamic shear-based purification of cancer cells with enhanced tumorigenic potential. Integrative Biology (United Kingdom), 2020, 12, 1-11.	0.6	Ο
40	Resolvin E1 is a pro-repair molecule that promotes intestinal epithelial wound healing. Proceedings of the United States of America, 2020, 117, 9477-9482.	3.3	56
41	Localized Immunomodulation with PD-L1 Results in Sustained Survival and Function of Allogeneic Islets without Chronic Immunosuppression. Journal of Immunology, 2020, 204, 2840-2851.	0.4	26
42	IFN-γ-tethered hydrogels enhance mesenchymal stem cell-based immunomodulation and promote tissue repair. Biomaterials, 2019, 220, 119403.	5.7	66
43	Synthetic hydrogels identify matrix physicochemical properties required for renal epithelial cell tubulogenesis. Journal of Cell Science, 2019, 132, .	1.2	12
44	Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis. Integrative Biology (United Kingdom), 2019, 11, 119-129.	0.6	61
45	Co-delivery of Wnt7a and muscle stem cells using synthetic bioadhesive hydrogel enhances murine muscle regeneration and cell migration during engraftment. Acta Biomaterialia, 2019, 94, 243-252.	4.1	36
46	Enabling mesenchymal stromal cell immunomodulatory analysis using scalable platforms. Integrative Biology (United Kingdom), 2019, 11, 154-162.	0.6	3
47	Linkage Groups within Thiol–Ene Photoclickable PEG Hydrogels Control In Vivo Stability. Advanced Healthcare Materials, 2019, 8, e1900371.	3.9	21
48	Lysostaphin and BMP-2 co-delivery reduces <i>S. aureus</i> infection and regenerates critical-sized segmental bone defects. Science Advances, 2019, 5, eaaw1228.	4.7	70
49	Heparin/Collagen Coatings Improve Human Mesenchymal Stromal Cell Response to Interferon Gamma. ACS Biomaterials Science and Engineering, 2019, 5, 2793-2803.	2.6	19
50	TNFα promotes mucosal wound repair through enhanced platelet activating factor receptor signaling in the epithelium. Mucosal Immunology, 2019, 12, 909-918.	2.7	34
51	Engineered materials to model human intestinal development and cancer using organoids. Experimental Cell Research, 2019, 377, 109-114.	1.2	19
52	Engineering hydrogels with affinity-bound laminin as 3D neural stem cell culture systems. Biomaterials Science, 2019, 7, 5338-5349.	2.6	35
53	Localized immune tolerance from FasL-functionalized PLG scaffolds. Biomaterials, 2019, 192, 271-281.	5.7	30
54	Nonadhesive Alginate Hydrogels Support Growth of Pluripotent Stem Cell-Derived Intestinal Organoids. Stem Cell Reports, 2019, 12, 381-394.	2.3	160

#	Article	IF	CITATIONS
55	Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomaterialia, 2019, 93, 2-11.	4.1	89
56	Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site. American Journal of Transplantation, 2019, 19, 1315-1327.	2.6	48
57	An affinity-based approach to engineer laminin-presenting cell instructive microenvironments. Biomaterials, 2019, 192, 601-611.	5.7	12
58	Receptor control in mesenchymal stem cell engineering. Nature Reviews Materials, 2018, 3, .	23.3	96
59	Parallel droplet microfluidics for high throughput cell encapsulation and synthetic microgel generation. Microsystems and Nanoengineering, 2018, 4, .	3.4	110
60	PEG hydrogel containing calcium-releasing particles and mesenchymal stromal cells promote vessel maturation. Acta Biomaterialia, 2018, 67, 53-65.	4.1	19
61	Adenosine Production by Biomaterial‣upported Mesenchymal Stromal Cells Reduces the Innate Inflammatory Response in Myocardial Ischemia/Reperfusion Injury. Journal of the American Heart Association, 2018, 7, .	1.6	48
62	Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation. Biomaterials, 2018, 172, 54-65.	5.7	94
63	Controlled JAGGED1 delivery induces human embryonic palate mesenchymal cells to form osteoblasts. Journal of Biomedical Materials Research - Part A, 2018, 106, 552-560.	2.1	13
64	Inhibition of Bacterial Adhesion on Nanotextured Stainless Steel 316L by Electrochemical Etching. ACS Biomaterials Science and Engineering, 2018, 4, 90-97.	2.6	86
65	Evaluation of Hydrogels Presenting Extracellular Matrix-Derived Adhesion Peptides and Encapsulating Cardiac Progenitor Cells for Cardiac Repair. ACS Biomaterials Science and Engineering, 2018, 4, 200-210.	2.6	28
66	A rapid method for determining protein diffusion through hydrogels for regenerative medicine applications. APL Bioengineering, 2018, 2, 026110.	3.3	50
67	Inhibition of TBK1/IKKε Promotes Regeneration of Pancreatic β-cells. Scientific Reports, 2018, 8, 15587.	1.6	24
68	PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nature Protocols, 2018, 13, 2102-2119.	5.5	113
69	Bacteriaâ€Based Materials for Stem Cell Engineering. Advanced Materials, 2018, 30, e1804310.	11.1	52
70	Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by <i>Staphylococcus aureus</i> and supports fracture healing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4960-E4969.	3.3	138
71	Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections. Nature Biomedical Engineering, 2018, 2, 841-849.	11.6	68
72	Minimally Invasive Delivery of Hydrogel-Encapsulated Amiodarone to the Epicardium Reduces Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006408.	2.1	17

#	Article	IF	CITATIONS
73	Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma. Science Advances, 2018, 4, eaar4008.	4.7	51
74	Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nature Materials, 2018, 17, 732-739.	13.3	124
75	Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes. Biotechnology and Bioengineering, 2018, 115, 2356-2364.	1.7	19
76	Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions. Matrix Biology, 2017, 57-58, 324-333.	1.5	99
77	Engineered matrices for skeletal muscle satellite cell engraftment and function. Matrix Biology, 2017, 60-61, 96-109.	1.5	30
78	Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate. Acta Biomaterialia, 2017, 51, 279-293.	4.1	62
79	Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 2017, 126, 61-74.	5.7	61
80	Matrix Mechanosensing: From Scaling Concepts in 'Omics Data to Mechanisms in the Nucleus, Regeneration, and Cancer. Annual Review of Biophysics, 2017, 46, 295-315.	4.5	89
81	Bio-synthetic materials for immunomodulation of islet transplants. Advanced Drug Delivery Reviews, 2017, 114, 266-271.	6.6	25
82	Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Science Advances, 2017, 3, e1700184.	4.7	130
83	A Minimally Invasive, Translational Method to Deliver Hydrogels to the Heart ThroughÂthe Pericardial Space. JACC Basic To Translational Science, 2017, 2, 601-609.	1.9	26
84	Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nature Cell Biology, 2017, 19, 1326-1335.	4.6	401
85	Peptide-functionalized poly[oligo(ethylene glycol) methacrylate] brushes on dopamine-coated stainless steel for controlled cell adhesion. Acta Biomaterialia, 2017, 59, 108-116.	4.1	37
86	Protease-degradable microgels for protein delivery for vascularization. Biomaterials, 2017, 113, 170-175.	5.7	72
87	Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin–paxillin recruitment at single focal adhesions. Molecular Biology of the Cell, 2017, 28, 1901-1911.	0.9	74
88	Biofunctional hydrogels for skeletal muscle constructs. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 967-976.	1.3	40
89	Synthesis of selfâ€assembled ILâ€IRaâ€presenting nanoparticles for the treatment of osteoarthritis. Journal of Biomedical Materials Research - Part A, 2016, 104, 595-599.	2.1	27
90	Integrinâ€specific hydrogels functionalized with VEGF for vascularization and bone regeneration of criticalâ€size bone defects. Journal of Biomedical Materials Research - Part A, 2016, 104, 889-900.	2.1	96

#	Article	IF	CITATIONS
91	Tobacco Mosaic Virus Functionalized Alginate Hydrogel Scaffolds for Bone Regeneration in Rats with Cranial Defect. ACS Biomaterials Science and Engineering, 2016, 2, 606-615.	2.6	34
92	Methods for Generating Hydrogel Particles for Protein Delivery. Annals of Biomedical Engineering, 2016, 44, 1946-1958.	1.3	54
93	Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Science Advances, 2016, 2, e1600188.	4.7	104
94	Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Delivery and Translational Research, 2016, 6, 77-95.	3.0	72
95	Vinculin regulates directionality and cell polarity in two- and three-dimensional matrix and three-dimensional microtrack migration. Molecular Biology of the Cell, 2016, 27, 1431-1441.	0.9	55
96	Tumor-Initiating Cells: Emerging Biophysical Methods of Isolation. Current Stem Cell Reports, 2016, 2, 21-32.	0.7	5
97	Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. Journal of Cell Biology, 2016, 212, 113-124.	2.3	100
98	Phototriggered fibril-like environments arbitrate cell escapes and migration from endothelial monolayers. Biomaterials, 2016, 82, 113-123.	5.7	19
99	Human mesenchymal stem cell behavior on segmented polyurethanes prepared with biologically active chain extenders. Journal of Materials Science: Materials in Medicine, 2016, 27, 38.	1.7	8
100	Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes. Biomaterials, 2015, 44, 55-70.	5.7	55
101	Vinculin-dependent actin bundling regulates cell migration and traction forces. Biochemical Journal, 2015, 465, 383-393.	1.7	43
102	Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats. Biomaterials, 2015, 63, 137-145.	5.7	91
103	Intramyocardial Delivery of <i>Notch</i> Ligand-Containing Hydrogels Improves Cardiac Function and Angiogenesis Following Infarction. Tissue Engineering - Part A, 2015, 21, 2315-2322.	1.6	52
104	Synchronized cell attachment triggered by photo-activatable adhesive ligands allows QCM-based detection of early integrin binding. Scientific Reports, 2015, 5, 9533.	1.6	26
105	Hic-5 Mediates TGFβ–Induced Adhesion in Vascular Smooth Muscle Cells by a Nox4-Dependent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1198-1206.	1.1	17
106	Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Advanced Drug Delivery Reviews, 2015, 94, 53-62.	6.6	561
107	Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nature Materials, 2015, 14, 352-360.	13.3	365
108	Contributions of the integrin β1 tail to cell adhesive forces. Experimental Cell Research, 2015, 332, 212-222.	1.2	11

#	Article	IF	CITATIONS
109	Engineered VEGF-releasing PEG–MAL hydrogel for pancreatic islet vascularization. Drug Delivery and Translational Research, 2015, 5, 125-136.	3.0	96
110	Endothelial retention and phenotype on carbonized cardiovascular implant surfaces. Biomaterials, 2014, 35, 7714-7723.	5.7	21
111	The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype. Bone, 2014, 68, 131-141.	1.4	40
112	Nanoengineered Particles for Enhanced Intraâ€Articular Retention and Delivery of Proteins. Advanced Healthcare Materials, 2014, 3, 1562-1567.	3.9	55
113	PEG–Maleimide Hydrogels for Protein and Cell Delivery in Regenerative Medicine. Annals of Biomedical Engineering, 2014, 42, 312-322.	1.3	50
114	Sensing rigidity. Nature Materials, 2014, 13, 539-540.	13.3	28
115	High Fidelity Nanopatterning of Proteins onto Well-Defined Surfaces Through Subtractive Contact Printing. Methods in Cell Biology, 2014, 119, 277-292.	0.5	2
116	Drug Delivery: Nanoengineered Particles for Enhanced Intra-Articular Retention and Delivery of Proteins (Adv. Healthcare Mater. 10/2014). Advanced Healthcare Materials, 2014, 3, 1561-1561.	3.9	1
117	Microfluidicâ€Based Generation of Size ontrolled, Biofunctionalized Synthetic Polymer Microgels for Cell Encapsulation. Advanced Materials, 2014, 26, 3003-3008.	11.1	174
118	Near-infrared fluorescence imaging as an alternative to bioluminescent bacteria to monitor biomaterial-associated infections. Acta Biomaterialia, 2014, 10, 2935-2944.	4.1	17
119	The modulation of cardiac progenitor cell function by hydrogel-dependent Notch1 activation. Biomaterials, 2014, 35, 8103-8112.	5.7	49
120	Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials, 2014, 35, 5453-5461.	5.7	156
121	Cellular Encapsulation Enhances Cardiac Repair. Journal of the American Heart Association, 2013, 2, e000367.	1.6	140
122	How vinculin regulates force transmission. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9788-9793.	3.3	209
123	Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials, 2013, 34, 4602-4611.	5.7	142
124	Photoâ€Activatable Surfaces for Cell Migration Assays. Advanced Functional Materials, 2013, 23, 5974-5980.	7.8	55
125	Photoactive Biomaterials: Photo-Activatable Surfaces for Cell Migration Assays (Adv. Funct. Mater.) Tj ETQq1 1 0	.784314 r 7.8	gBT /Overloci
126	CIM® monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles. Virology, 2012, 434, 265-270.	1.1	65

#	Article	IF	CITATIONS
127	Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials, 2012, 33, 7665-7675.	5.7	113
128	Maleimide Crossâ€Linked Bioactive PEG Hydrogel Exhibits Improved Reaction Kinetics and Crossâ€Linking for Cell Encapsulation and In Situ Delivery. Advanced Materials, 2012, 24, 64-70.	11.1	458
129	Bioactive Hydrogels: Maleimide Crossâ€Linked Bioactive PEG Hydrogel Exhibits Improved Reaction Kinetics and Crossâ€Linking for Cell Encapsulation and In Situ Delivery (Adv. Mater. 1/2012). Advanced Materials, 2012, 24, 2-2.	11.1	6
130	Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials, 2011, 32, 5241-5251.	5.7	281
131	Dynamic culture substrate that captures a specific extracellular matrix protein in response to light. Science and Technology of Advanced Materials, 2011, 12, 044608.	2.8	19
132	Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials, 2010, 31, 2574-2582.	5.7	222
133	Focal adhesion kinaseâ€dependent regulation of adhesive forces involves vinculin recruitment to focal adhesions. Biology of the Cell, 2010, 102, 203-213.	0.7	44
134	Bioartificial matrices for therapeutic vascularization. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3323-3328.	3.3	251
135	Simple application of fibronectin–mimetic coating enhances osseointegration of titanium implants. Journal of Cellular and Molecular Medicine, 2009, 13, 2602-2612.	1.6	70
136	Update on therapeutic vascularization strategies. Regenerative Medicine, 2009, 4, 65-80.	0.8	125
137	Bone Cells Grown on Micropatterned Surfaces are More Sensitive to Fluid Shear Stress. Cellular and Molecular Bioengineering, 2008, 1, 182-188.	1.0	13
138	Reduced acute inflammatory responses to microgel conformal coatings. Biomaterials, 2008, 29, 4605-4615.	5.7	114
139	Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials, 2007, 28, 3228-3235.	5.7	228
140	Get a grip: integrins in cell–biomaterial interactions. Biomaterials, 2005, 26, 7525-7529.	5.7	292
141	Cell Adhesion Strengthening: Contributions of Adhesive Area, Integrin Binding, and Focal Adhesion Assembly. Molecular Biology of the Cell, 2005, 16, 4329-4340.	0.9	373
142	α2β1integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation. Journal of Biomedical Materials Research - Part A, 2004, 69A, 591-600.	2.1	136
143	Stick and Grip: Measurement Systems and Quantitative Analyses of Integrin-Mediated Cell Adhesion Strength. Cell Biochemistry and Biophysics, 2003, 39, 61-74.	0.9	86
144	Addressing cell-sourcing limitations with gene therapy - Genetic engineering with runx2/cbfa1 for an alternative to biological grafts. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 65-70.	1.1	1

#	Article	IF	CITATIONS
145	Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide. Journal of Biomedical Materials Research - Part A, 2003, 65A, 511-523.	2.1	164
146	Fibronectin Adsorption and Cell Adhesion to Mixed Monolayers of Tri(ethylene glycol)- and Methyl-Terminated Alkanethiolsâ€. Langmuir, 2003, 19, 1847-1852.	1.6	74
147	Micropatterned Surfaces to Engineer Focal Adhesions for Analysis of Cell Adhesion Strengthening. Langmuir, 2002, 18, 5579-5584.	1.6	93
148	Biomimetic Surfaces for Control of Cell Adhesion to Facilitate Bone Formation. Critical Reviews in Eukaryotic Gene Expression, 2002, 12, 151-162.	0.4	58
149	Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials, 1997, 18, 1091-1098.	5.7	192
150	Capsules of Chitosan a tailor drug delivery system with controlled release for specific organs Â. , 0, , .		0