
Usha Panchapakesan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7667272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organ protection beyond glycaemic control with SGLT2 inhibitors. Nature Reviews Nephrology, 2021, 17, 223-224.	9.6	4
2	The primary cilia in diabetic kidney disease: A tubulocentric view?. International Journal of Biochemistry and Cell Biology, 2020, 122, 105718.	2.8	4
3	Drug repurposing in kidney disease. Kidney International, 2018, 94, 40-48.	5.2	41
4	The role of toll-like receptors in diabetic kidney disease. Current Opinion in Nephrology and Hypertension, 2018, 27, 30-34.	2.0	25
5	The authors reply. Kidney International, 2018, 94, 831.	5.2	1
6	Long non-coding RNAs–towards precision medicine in diabetic kidney disease?. Clinical Science, 2016, 130, 1599-1602.	4.3	15
7	Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Scientific Reports, 2016, 6, 26428.	3.3	119
8	Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology, 2016, 21, 423-431.	1.6	55
9	The Role of Dipeptidyl Peptidase – 4 Inhibitors in Diabetic Kidney Disease. Frontiers in Immunology, 2015, 6, 443.	4.8	35
10	Linagliptin Limits High Glucose Induced Conversion of Latent to Active TGFß through Interaction with CIM6PR and Limits Renal Tubulointerstitial Fibronectin. PLoS ONE, 2015, 10, e0141143.	2.5	24
11	The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose. PLoS ONE, 2015, 10, e0143941.	2.5	17
12	TLR4 Activation Promotes Podocyte Injury and Interstitial Fibrosis in Diabetic Nephropathy. PLoS ONE, 2014, 9, e97985.	2.5	111
13	Inhibition of Kidney Proximal Tubular Glucose Reabsorption Does Not Prevent against Diabetic Nephropathy in Type 1 Diabetic eNOS Knockout Mice. PLoS ONE, 2014, 9, e108994.	2.5	58
14	DPP-4 Inhibitors—Renoprotection in Diabetic Nephropathy?. Diabetes, 2014, 63, 1829-1830.	0.6	19
15	Role of Toll-like receptors in diabetic nephropathy. Clinical Science, 2014, 126, 685-694.	4.3	63
16	The Role of TLR2 and 4-Mediated Inflammatory Pathways in Endothelial Cells Exposed to High Glucose. PLoS ONE, 2014, 9, e108844.	2.5	91
17	Requirement for TLR2 in the development of albuminuria, inflammation and fibrosis in experimental diabetic nephropathy. International Journal of Clinical and Experimental Pathology, 2014, 7, 481-95.	0.5	21
18	Role of GLP-1 and DPP-4 in diabetic nephropathy and cardiovascular disease. Clinical Science, 2013, 124, 17-26.	4.3	52

#	Article	IF	CITATIONS
19	Effects of SGLT2 Inhibition in Human Kidney Proximal Tubular Cells—Renoprotection in Diabetic Nephropathy?. PLoS ONE, 2013, 8, e54442.	2.5	224
20	Renal epidermal growth factor receptor: Its role in sodium and water homeostasis in diabetic nephropathy. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 84-88.	1.9	23
21	Review article: Importance of the kidney proximal tubular cells in thiazolidinedioneâ€mediated sodium and water uptake. Nephrology, 2009, 14, 298-301.	1.6	26

Nanomedicines in the treatment of anemia in renal disease: focus on CERA (Continuous Erythropoietin) Tj ETQq0 0.0 rgBT /Overlock 10

23 Drug Insight: thiazolidinediones and diabetic nephropathy—relevance to renoprotection. Nature 2.0 39 Clinical Practice Nephrology, 2005, 1, 33-43.	
--	--