Viola Horvath

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7667071/viola-horvath-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 1,292 45 35 h-index g-index citations papers 48 5.6 4.04 1,373 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
45	Temperature-Responsive Magnetic Nanoparticles for Bioanalysis of Lysozyme in Urine Samples. <i>Nanomaterials</i> , 2021 , 11,	5.4	1
44	The influence of antibiotics on transitory resistome during gut colonization with CTX-M-15 and OXA-162 producing Klebsiella pneumoniae ST15. <i>Scientific Reports</i> , 2021 , 11, 6335	4.9	3
43	Synthesis, Molecular Recognition Study and Liquid Membrane-Based Applications of Highly Lipophilic Enantiopure Acridino-Crown Ethers. <i>Molecules</i> , 2020 , 25,	4.8	4
42	Salt and solvent effects in the microscale chromatographic separation of heparan sulfate disaccharides. <i>Journal of Chromatography A</i> , 2020 , 1610, 460548	4.5	7
41	Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore. <i>Sensors</i> , 2018 , 18,	3.8	17
40	Preparation of Molecularly Imprinted Microspheres by Precipitation Polymerization. <i>Methods in Molecular Biology</i> , 2017 , 1575, 341-352	1.4	5
39	Enzymatic digestion as a tool for removing proteinaceous templates from molecularly imprinted polymers. <i>Analytical Methods</i> , 2017 , 9, 4496-4503	3.2	6
38	Electrosynthesized molecularly imprinted polymers for protein recognition. <i>TrAC - Trends in Analytical Chemistry</i> , 2016 , 79, 179-190	14.6	106
37	Changes of potentially anti-nutritive components in Hungarian potatoes from organic and conventional farming. <i>Acta Alimentaria</i> , 2014 , 43, 676-683	1	2
36	Determination of sorbitol in the presence of high amount of mannitol from biological samples. <i>Periodica Polytechnica: Chemical Engineering</i> , 2014 , 58, 1	1.3	3
35	Molecularly imprinted microspheres prepared by precipitation polymerization at high monomer concentrations. <i>Molecular Imprinting</i> , 2014 , 2, 1-17		18
34	Electrochemical template synthesis of protein-imprinted magnetic polymer microrods. <i>Journal of Materials Science</i> , 2013 , 48, 5209-5218	4.3	23
33	Molecularly imprinted polymer microspheres containing photoswitchable spiropyran-based binding sites. <i>ACS Applied Materials & Discounty of the State of Applied Materials and State of the State of the</i>	9.5	56
32	Nanosphere Lithography as a Versatile Method to Generate Surface-Imprinted Polymer Films for Selective Protein Recognition. <i>Advanced Functional Materials</i> , 2013 , 23, n/a-n/a	15.6	10
31	In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents. <i>Journal of Molecular Recognition</i> , 2012 , 25, 320-9	2.6	17
30	Selective solid phase extraction of propranolol on multiwell membrane filter plates modified with molecularly imprinted polymer. <i>Analyst, The</i> , 2011 , 136, 2175-82	5	24
29	Enantiomeric discrimination of chiral crown ether ionophores containing phenazine subcyclic unit by ion-selective potentiometry. <i>Periodica Polytechnica: Chemical Engineering</i> , 2010 , 54, 3	1.3	1

(1997-2009)

28	Electrosynthesized Surface-Imprinted Conducting Polymer Microrods for Selective Protein Recognition. <i>Advanced Materials</i> , 2009 , 21, 2271-2275	24	125
27	Preparation of terbutylazine imprinted polymer microspheres using viscous polymerization solvents. <i>Journal of Separation Science</i> , 2009 , 32, 3347-58	3.4	12
26	Synthesis of new optically active acridino-18-crown-6 ligands and studies of their potentiometric selectivity toward the enantiomers of protonated 1-phenylethylamine and metal ions. <i>Tetrahedron: Asymmetry</i> , 2009 , 20, 2795-2801		18
25	Accelerated development procedure for molecularly imprinted polymers using membrane filterplates. <i>ACS Combinatorial Science</i> , 2009 , 11, 645-52		31
24	Analytical followup of the gamma initiated synthesis of a molecularly imprinted polymer. <i>Analytica Chimica Acta</i> , 2008 , 608, 197-203	6.6	2
23	Which molecularly imprinted polymer is better?. <i>Analytica Chimica Acta</i> , 2007 , 591, 17-21	6.6	22
22	Measurement of sodium ion concentration in undiluted urine with cation-selective polymeric membrane electrodes after the removal of interfering compounds. <i>Talanta</i> , 2007 , 74, 255-64	6.2	28
21	Nonlinear adsorption isotherm as a tool for understanding and characterizing molecularly imprinted polymers. <i>Journal of Chromatography A</i> , 2006 , 1119, 29-33	4.5	29
20	High-performance liquid chromatographic-tandem mass spectrometric method for the determination of clemastine in human plasma. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2005 , 816, 153-9	3.2	5
19	Influence of food on the oral bioavailability of deramciclane from film-coated tablet in healthy male volunteers. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2004 , 58, 689-95	5.7	6
18	Effect of solvents on the selectivity of terbutylazine imprinted polymer sorbents used in solid-phase extraction. <i>Journal of Chromatography A</i> , 2002 , 973, 1-12	4.5	79
17	Determination of phenytoin in plasma by molecularly imprinted solid-phase extraction. <i>Journal of Chromatography A</i> , 2001 , 930, 31-8	4.5	93
16	Determination of deramciclane and N-desmethylderamciclane in human plasma by liquid chromatography-tandem mass spectrometry using off-line robotic sample pretreatment. <i>Journal of Chromatography A</i> , 2000 , 896, 279-90	4.5	6
15	Immunoassay-based determination of phenobarbital using size-exclusion chromatography. <i>Biomedical Applications</i> , 2000 , 749, 215-23		6
14	Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. <i>Analytical Chemistry</i> , 2000 , 72, 3934-41	7.8	174
13	Novel type of flow injection immunoassay for the determination of phenytoin in serum. <i>Analytica Chimica Acta</i> , 1999 , 391, 9-17	6.6	14
12	Enantiomer-Selectivity of Ion-selective Electrodes Based on a Chiral Crown-ether Ionophore. <i>Analytical Letters</i> , 1997 , 30, 1591-1609	2.2	47
11	Economic approach to robotic sample pretreatment in high-performance liquid chromatography. Journal of Chromatography A, 1997 , 771, 35-43	4.5	6

10	Sensitive high-performance liquid chromatographic determination of nifedipine in dog plasma using an automated sample preparation system with laboratory robot. <i>Biomedical Applications</i> , 1996 , 686, 211-9		20
9	Determination of nifedipine in human plasma by high performance liquid chromatography using column-switching technique. <i>Mikrochimica Acta</i> , 1994 , 113, 171-178	5.8	12
8	Cyclic voltammetric experiments with plasticized PVC membranes. <i>Analytica Chimica Acta</i> , 1993 , 273, 145-152	6.6	30
7	Selectivity of plasticized poly(vinyl chloride)-based ion-selective electrodes. <i>Analytica Chimica Acta</i> , 1993 , 282, 259-264	6.6	8
6	Ion exchange at neutral carrier ion-selective electrode membranes. <i>Freseniuss Journal of Analytical Chemistry</i> , 1993 , 346, 569-571		2
5	Liposome flow injection immunoassay: model calculations of competitive immunoreactions involving univalent and multivalent ligands. <i>Analytical Chemistry</i> , 1991 , 63, 2007-11	7.8	27
4	Amperometric measurements with ion-selective electrode membranes in a flow system. <i>Mikrochimica Acta</i> , 1990 , 100, 217-224	5.8	11
3	Liposome flow injection immunoassay: implications for sensitivity, dynamic range, and antibody regeneration. <i>Analytical Chemistry</i> , 1990 , 62, 2587-93	7.8	94
2	Selective ion-exchanger behaviour of neutral carrier ion-selective electrode membranes. <i>Talanta</i> , 1989 , 36, 403-5	6.2	9
1	Inorganic Salts Trapped in Neutral Carrier Ion-Selective Electrode Membranes form Ion-Exchange Sites. <i>Analytical Letters</i> , 1988 , 21, 2165-2175	2.2	14