Jiliang Mo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/766695/publications.pdf

Version: 2024-02-01

257450 289244 1,901 74 24 40 citations h-index g-index papers 75 75 75 1259 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guided deep subdomain adaptation network for fault diagnosis of different types of rolling bearings. Journal of Intelligent Manufacturing, 2023, 34, 2225-2240.	7.3	9
2	Nonlinear behaviors of the disc brake system under the effect of wheelâ^'rail adhesion. Tribology International, 2022, 165, 107263.	5.9	23
3	Numerical and Experimental Studies on the Effects of the TBM Cutter Profile on Rock Cutting. KSCE Journal of Civil Engineering, 2022, 26, 416-432.	1.9	12
4	Accumulated wear degradation prediction of railway friction block considering the evolution of contact status. Wear, 2022, 494-495, 204251.	3.1	3
5	A novel dynamics model of a trailer bogie brake system and its application in stability analysis. Mechanical Systems and Signal Processing, 2022, 172, 108966.	8.0	13
6	Brake uneven wear of high-speed train intelligent monitoring using an ensemble model based on multi-sensor feature fusion and deep learning. Engineering Failure Analysis, 2022, 137, 106219.	4.0	17
7	The effects of the structural stiffness of vibration transfer path on friction-induced vibration and noise. Tribology International, 2022, 173, 107687.	5.9	5
8	Experimental study on the evolution of friction and wear behaviours of railway friction block during temperature rise under extreme braking conditions. Engineering Failure Analysis, 2022, 141, 106621.	4.0	9
9	The effect of the macroscopic surface morphology caused by the uneven wear on friction induced vibration. Tribology International, 2021, 154, 106672.	5.9	12
10	The effects of the friction block shape on the tribological and dynamical behaviours of high-speed train brakes. International Journal of Mechanical Sciences, 2021, 194, 106184.	6.7	28
11	Impact-sliding wear properties of PVD CrN and WC/C coatings. Surface Engineering, 2021, 37, 12-23.	2.2	9
12	Effect of Surface Modification on the Tribological Properties of Friction Blocks in High-Speed Train Brake Systems. Tribology Letters, 2021, 69, $\hat{1}$.	2.6	18
13	Simultaneous energy harvesting and tribological property improvement. Friction, 2021, 9, 1275-1291.	6.4	5
14	Improving the tribological behavior of the brake interface of high-speed trains via a cantilever beam structure. Tribology International, 2021, 155, 106783.	5.9	11
15	Continuous manipulation of acoustic wavefront using a programmable acoustic metasurface. Journal Physics D: Applied Physics, 2021, 54, 305302.	2.8	8
16	Investigation into Multiaxial Character of Thermomechanical Fatigue Damage on High-Speed Railway Brake Disc. Vehicles, 2021, 3, 287-299.	3.1	6
17	The effect of damping components on the interfacial dynamics and tribological behavior of high-speed train brakes. Applied Acoustics, 2021, 178, 107962.	3.3	9
18	A new concept of frequency-excitation-up conversion to improve the yield of linear piezoelectric generators. Sensors and Actuators A: Physical, 2021, 325, 112712.	4.1	6

#	Article	IF	CITATIONS
19	The effect of a time-varying contact surface on interfacial tribological behaviour via a surface groove and filler. Wear, 2021, 478-479, 203905.	3.1	O
20	The Influence of Friction Blocks Connection Configuration on High-Speed Railway Brake Systems Performance. Tribology Letters, 2021, 69, 1.	2.6	16
21	Friction-induced vibration energy harvesting of a high-speed train brake system via a piezoelectric cantilever beam. Tribology International, 2021, 162, 107126.	5.9	21
22	The effect of the friction block installation direction on the tribological behavior and vibrational response of the high-speed train brake interface. Wear, 2021, 484-485, 204049.	3.1	6
23	Research on diagnosis algorithm of mechanical equipment brake friction fault based on MCNN-SVM. Measurement: Journal of the International Measurement Confederation, 2021, 186, 110065.	5.0	17
24	Suppression of Friction-Induced Stick–Slip Behavior and Improvement of Tribological Characteristics of Sliding Systems by Introducing Damping Materials. Tribology Transactions, 2020, 63, 222-234.	2.0	12
25	An investigation of stick-slip oscillation of Mn–Cu damping alloy as a friction material. Tribology International, 2020, 146, 106024.	5.9	20
26	Tribological and dynamical analysis of a brake pad with multiple blocks for a high-speed train. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234, 1771-1788.	1.8	6
27	Effect of Finger Sliding Direction on Tactile Perception, Friction and Dynamics. Tribology Letters, 2020, 68, 1.	2.6	15
28	Aggregate micro tribological properties of sponge city permeable pavement base layer under vehicle loading. Construction and Building Materials, 2020, 261, 120424.	7.2	8
29	Contact behaviour and vibrational response of a high-speed train brake friction block. Tribology International, 2020, 152, 106540.	5.9	41
30	Energy harvesting and vibration reduction by sandwiching piezoelectric elements into elastic damping components with parallel-grooved structures. Composite Structures, 2020, 241, 112105.	5.8	10
31	Influence of the Friction Block Shape and Installation Angle of High-Speed Train Brakes on Brake Noise. Journal of Tribology, 2020, 142, .	1.9	7
32	The effect of the macroscopic contact surface status caused by the uneven wear on friction induced vibration. , 2020, , .		0
33	Fabrication of superhydrophobic aluminum surface by droplet etching and chemical modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 205-212.	4.7	55
34	Tuneable gradient Helmholtz-resonator-based acoustic metasurface for acoustic focusing. Journal Physics D: Applied Physics, 2019, 52, 385303.	2.8	25
35	Effect of structural stiffness on impact-sliding wear behavior of aluminium alloy. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of Engineering Tribology, 2019, 233, 1844-1856.	1.8	2
36	Preparation of mechanically durable superhydrophobic aluminum surface by sandblasting and chemical modification. Progress in Organic Coatings, 2019, 133, 77-84.	3.9	53

#	Article	IF	Citations
37	Effect of perforated structure of friction block on the wear, thermal distribution and noise characteristics of railway brake systems. Wear, 2019, 426-427, 1176-1186.	3.1	36
38	The effects of grooved rubber blocks on stick–slip and wear behaviours. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 2939-2954.	1.9	5
39	Improvement of dynamical and tribological properties of friction systems by introducing parallel-grooved structures in elastic damping components. Composite Structures, 2018, 192, 8-19.	5.8	20
40	Grooved-structure design for improved component damping ability. Tribology International, 2018, 123, 50-60.	5.9	7
41	How does substrate roughness affect the service life of a superhydrophobic coating?. Applied Surface Science, 2018, 441, 491-499.	6.1	29
42	Effect of surface roughness on friction-induced noise: Exploring the generation of squeal at sliding friction interface. Wear, 2018, 402-403, 80-90.	3.1	33
43	Experimental investigation of the squeal characteristics in railway disc brakes. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of Engineering Tribology, 2018, 232, 1437-1449.	1.8	8
44	Effects of a horizontal magnetic field on unstable vibration and noise of a friction interface with different magnetic properties. Tribology International, 2018, 120, 47-57.	5.9	8
45	Improving Dynamic and Tribological Behaviours by Means of a Mn–Cu Damping Alloy with Grooved Surface Features. Tribology Letters, 2018, 66, 1.	2.6	16
46	Study on the Correlation Between Dynamical Behavior and Friction/Wear Mechanism Under the Effect of Grooves. Journal of Materials Engineering and Performance, 2018, 27, 2875-2884.	2.5	5
47	Correlation between tactile perception and tribological and dynamical properties for human finger under different sliding speeds. Tribology International, 2018, 123, 286-295.	5.9	21
48	The influence of the angular distribution of a grooved surface texturing on the generation of friction-induced vibration and noise. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of Engineering Tribology, 2018, 232, 1036-1045.	1.8	4
49	Debris trapping and space-varying contact via surface texturing for enhanced noise performance. Wear, 2018, 396-397, 86-97.	3.1	25
50	Overview of finger friction and tactile perception. Biosurface and Biotribology, 2018, 4, 99-111.	1.5	10
51	Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration. Energy Conversion and Management, 2018, 171, 1134-1149.	9.2	68
52	Reducing friction-induced vibration and noise by clearing wear debris from contact surface by blowing air and adding magnetic field. Wear, 2018, 408-409, 238-247.	3.1	17
53	Model reduction for friction-induced vibration of multi-degree-of-freedom systems and experimental validation. International Journal of Mechanical Sciences, 2018, 145, 106-119.	6.7	15
54	The effect of the grooved elastic damping component in reducing friction-induced vibration. Tribology International, 2017, 110, 264-277.	5.9	28

#	Article	IF	Citations
55	The Effect of Changing Fingerprinting Directions on Finger Friction. Tribology Letters, 2017, 65, 1.	2.6	12
56	Improving tribological behaviours and noise performance of railway disc brake by grooved surface texturing. Wear, 2017, 376-377, 1586-1600.	3.1	33
57	How do grooves on friction interface affect tribological and vibration and squeal noise performance. Tribology International, 2017, 109, 192-205.	5.9	27
58	Robust micro-nanoscale flowerlike ZnO/epoxy resin superhydrophobic coating with rapid healing ability. Chemical Engineering Journal, 2017, 313, 1152-1159.	12.7	136
59	Disc surface modifications for enhanced performance against friction noise. Applied Surface Science, 2016, 382, 101-110.	6.1	13
60	Noise performance improvements and tribological consequences of a pad-on-disc system through groove-textured disc surface. Tribology International, 2016, 102, 222-236.	5.9	38
61	Squeal Noise of Friction Material With Groove-Textured Surface: An Experimental and Numerical Analysis. Journal of Tribology, 2016, 138, .	1.9	18
62	Experimental and numerical studies of friction-induced vibration and noise and the effects of groove-textured surfaces. Mechanical Systems and Signal Processing, 2014, 46, 191-208.	8.0	49
63	Numerical study of friction-induced vibration and noise on groove-textured surface. Tribology International, 2013, 64, 1-7.	5.9	26
64	The effect of groove-textured surface on friction and wear and friction-induced vibration and noise. Wear, 2013, 301, 671-681.	3.1	84
65	Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings. Surface and Coatings Technology, 2013, 215, 170-177.	4.8	122
66	Tribological investigation of WC/C coating under dry sliding conditions. Wear, 2011, 271, 1998-2005.	3.1	25
67	Study on rotational fretting wear of 7075 aluminum alloy. Tribology International, 2010, 43, 912-917.	5.9	38
68	Tribological oxidation behaviour of PVD hard coatings. Tribology International, 2009, 42, 1758-1764.	5.9	86
69	Sliding tribological behaviors of PVD CrN and AlCrN coatings against Si3N4 ceramic and pure titanium. Wear, 2009, 267, 874-881.	3.1	59
70	Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc. Applied Surface Science, 2009, 255, 7627-7634.	6.1	32
71	Sliding tribological behavior of AlCrN coating. Tribology International, 2008, 41, 1161-1168.	5.9	56
72	Comparison of tribological behaviours of AlCrN and TiAlN coatings—Deposited by physical vapor deposition. Wear, 2007, 263, 1423-1429.	3.1	170

#	Article	lF	CITATIONS
73	Effect of damping components having slotted-structures on the instability induced by sliding friction. Tribology Transactions, 0 , , 1 -17.	2.0	2
74	Facile Fabrication of Durable Superhydrophobic Aluminum Alloy Surfaces by HS-WEDM and Chemical Modification. Nano, 0, , .	1.0	3