
Raquel Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7666731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Argonaute-2 protects the neurovascular unit from damage caused by systemic inflammation. Journal of Neuroinflammation, 2022, 19, 11.	3.1	7
2	MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson's disease. Molecular Therapy, 2022, 30, 3176-3192.	3.7	27
3	Chemical signature and antimicrobial activity of Central Portuguese Natural Mineral Waters against selected skin pathogens. Environmental Geochemistry and Health, 2020, 42, 2039-2057.	1.8	7
4	Editorial: Dual Role of Microglia in Health and Disease: Pushing the Balance Towards Repair. Frontiers in Cellular Neuroscience, 2020, 14, 259.	1.8	2
5	Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nature Communications, 2020, 11, 4265.	5.8	65
6	In vitro evaluation of potential benefits of a silica-rich thermal water (Monfortinho Thermal Water) in hyperkeratotic skin conditions. International Journal of Biometeorology, 2020, 64, 1957-1968.	1.3	7
7	Nanotechnology for intracellular delivery and targeting. , 2020, , 683-696.		1
8	C-Terminal Binding Proteins Promote Neurogenesis and Oligodendrogenesis in the Subventricular Zone. Frontiers in Cell and Developmental Biology, 2020, 8, 584220.	1.8	1
9	Anti-inflammatory potential of Portuguese thermal waters. Scientific Reports, 2020, 10, 22313.	1.6	16
10	Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Scientific Reports, 2019, 9, 8384.	1.6	26
11	Intravenous administration of retinoic acid-loaded polymeric nanoparticles prevents ischemic injury in the immature brain. Neuroscience Letters, 2018, 673, 116-121.	1.0	16
12	Challenging the great vascular wall: Can we envision a simple yet comprehensive therapy for stroke?. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e350-e354.	1.3	6
13	The Ischemic Immature Brain: Views on Current Experimental Models. Frontiers in Cellular Neuroscience, 2018, 12, 277.	1.8	5
14	MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS ONE, 2018, 13, e0193609.	1.1	31
15	OP0134â€Multifactorial explanatory model of fatigue in patients with rheumatoid arthritis: a path analysis. , 2018, , .		Ο
16	Vascular interâ€regulation of inflammation: molecular and cellular targets for <scp>CNS</scp> therapy. Journal of Neurochemistry, 2017, 140, 692-702.	2.1	9
17	Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles. Acta Biomaterialia, 2017, 59, 293-302.	4.1	24
18	Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles. Mediators of Inflammation, 2017, 2017, 1-11.	1.4	41

RAQUEL FERREIRA

#	Article	IF	CITATIONS
19	Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. Journal of Neuroinflammation, 2016, 13, 137.	3.1	76
20	Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia. Nanoscale, 2016, 8, 8126-8137.	2.8	39
21	Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release, 2016, 235, 34-47.	4.8	1,018
22	Cellular response of the blood-brain barrier to injury: Potential biomarkers and therapeutic targets for brain regeneration. Neurobiology of Disease, 2016, 91, 262-273.	2.1	41
23	Histaminergic Regulation of Blood–Brain Barrier Activity. Receptors, 2016, , 215-230.	0.2	1
24	Dual role of microglia in health and disease: pushing the balance toward repair. Frontiers in Cellular Neuroscience, 2015, 9, 51.	1.8	16
25	Sequential Administration of Carbon Nanotubes and Near-Infrared Radiation for the Treatment of Gliomas. Frontiers in Oncology, 2014, 4, 180.	1.3	29
26	Argonauteâ€2 Promotes miRâ€18a Entry in Human Brain Endothelial Cells. Journal of the American Heart Association, 2014, 3, e000968.	1.6	26
27	MicroRNA-18a Improves Human Cerebral Arteriovenous Malformation Endothelial Cell Function. Stroke, 2014, 45, 293-297.	1.0	43
28	Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. Journal of Neuroinflammation, 2013, 10, 16.	3.1	180
29	Galanin Promotes Neuronal Differentiation in Murine Subventricular Zone Cell Cultures. Stem Cells and Development, 2013, 22, 1693-1708.	1.1	19
30	Novel Role of Neuropeptide Y in the Modulation of Microglia Activity. Advances in Neuroimmune Biology, 2013, 4, 167-176.	0.7	1
31	Multifaces of neuropeptide Y in the brain – Neuroprotection, neurogenesis and neuroinflammation. Neuropeptides, 2012, 46, 299-308.	0.9	103
32	Polymeric Nanoparticles to Control the Differentiation of Neural Stem Cells in the Subventricular Zone of the Brain. ACS Nano, 2012, 6, 10463-10474.	7.3	85
33	Histamine modulates microglia function. Journal of Neuroinflammation, 2012, 9, 90.	3.1	95
34	Histamine Stimulates Neurogenesis in the Rodent Subventricular Zone. Stem Cells, 2012, 30, 773-784.	1.4	46
35	Neuropeptide Y inhibits interleukinâ€1 betaâ€induced microglia motility. Journal of Neurochemistry, 2012, 120, 93-105.	2.1	63
36	Microglia: The Bodyguard and the Hunter of the Adult Neurogenic Niche. , 2012, , 245-279.		2

36 Microglia: The Bodyguard and the Hunter of the Adult Neurogenic Niche. , 2012, , 245-279.

RAQUEL FERREIRA

#	Article	IF	CITATIONS
37	Neuropeptide Y inhibits interleukin-1β-induced phagocytosis by microglial cells. Journal of Neuroinflammation, 2011, 8, 169.	3.1	74
38	Neuropeptide Y Modulation of Interleukin-1β (IL-1β)-induced Nitric Oxide Production in Microglia. Journal of Biological Chemistry, 2010, 285, 41921-41934.	1.6	101
39	Tumor Necrosis Factor-α Modulates Survival, Proliferation, and Neuronal Differentiation in Neonatal Subventricular Zone Cell Cultures. Stem Cells, 2008, 26, 2361-2371.	1.4	198
40	Neuropeptide Y Promotes Neurogenesis in Murine Subventricular Zone. Stem Cells, 2008, 26, 1636-1645.	1.4	88
41	Methamphetamineâ€Induced Early Increase of ILâ€6 and TNFâ€Î± mRNA Expression in the Mouse Brain. Annals of the New York Academy of Sciences, 2008, 1139, 103-111.	1.8	106
42	Interaction between neuropeptide Y (NPY) and brainâ€derived neurotrophic factor in NPYâ€mediated neuroprotection against excitotoxicity: a role for microglia. European Journal of Neuroscience, 2008, 27, 2089-2102.	1.2	50
43	Response to Histamine Allows the Functional Identification of Neuronal Progenitors, Neurons, Astrocytes, and Immature Cells in Subventricular Zone Cell Cultures. Rejuvenation Research, 2008, 11, 187-200.	0.9	45
44	Protein kinase C activity blocks neuropeptide Yâ€mediated inhibition of glutamate release and contributes to excitability of the hippocampus in status epilepticus. FASEB Journal, 2007, 21, 671-681.	0.2	42
45	Neuropeptide Y can rescue neurons from cell death following the application of an excitotoxic insult with kainate in rat organotypic hippocampal slice cultures. Peptides, 2007, 28, 288-294.	1.2	33
46	Neuropeptide Y as an Endogenous Antiepileptic, Neuroprotective and Pro-Neurogenic Peptide. Recent Patents on CNS Drug Discovery, 2006, 1, 315-324.	0.9	65
47	Up-regulation of neuropeptide Y levels and modulation of glutamate release through neuropeptide Y receptors in the hippocampus of kainate-induced epileptic rats. Journal of Neurochemistry, 2005, 93, 163-170.	2.1	45
48	Inflammation and Neurogenesis in Temporal Lobe Epilepsy. CNS and Neurological Disorders, 2005, 4, 349-360.	4.3	44