
Harry Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7666539/publications.pdf Version: 2024-02-01

HADDYLEVINE

#	Article	IF	CITATIONS
1	Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition, 1991, 30, 115-360.	5.4	1,311
2	A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs). Carbohydrate Polymers, 1986, 6, 213-244.	5.1	433
3	Glass Transitions and Water-Food Structure Interactions. Advances in Food and Nutrition Research, 1995, 38, 103-269.	1.5	246
4	Solvent Retention Capacity (SRC) Testing of Wheat Flour: Principles and Value in Predicting Flour Functionality in Different Wheatâ€Based Food Processes and in Wheat Breeding—A Review. Cereal Chemistry, 2011, 88, 537-552.	1.1	238
5	Non-equilibrium behavior of small carbohydrate-water systems. Pure and Applied Chemistry, 1988, 60, 1841-1864.	0.9	234
6	Amylases and bread firming – an integrated view. Journal of Cereal Science, 2009, 50, 345-352.	1.8	226
7	Non-equilibrium melting of native granular starch: Part I. Temperature location of the glass transition associated with gelatinization of A-type cereal starches. Carbohydrate Polymers, 1988, 8, 183-208.	5.1	206
8	Thermomechanical properties of small-carbohydrate–water glasses and â€~rubbers'. Kinetically metastable systems at sub-zero temperatures. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 2619.	1.0	148
9	The glassy state phenomenon in applications for the food industry: Application of the food polymer science approach to structure–function relationships of sucrose in cookie and cracker systems. Journal of the Science of Food and Agriculture, 1993, 63, 133-176.	1.7	130
10	A Food Polymer Science Approach to Structure-Property Relationships in Aqueous Food Systems: Non-Equilibrium Behavior of Carbohydrate-Water Systems. Advances in Experimental Medicine and Biology, 1991, 302, 29-101.	0.8	106
11	Water and the glass transition — Dependence of the glass transition on composition and chemical structure: Special implications for flour functionality in cookie baking. Journal of Food Engineering, 1995, 24, 431-509.	2.7	101
12	Water and the glass transition — Dependence of the glass transition on composition and chemical structure: Special implications for flour functionality in cookie baking. Journal of Food Engineering, 1994, 22, 143-188.	2.7	98
13	Water relationships in starch transitions. Carbohydrate Polymers, 1993, 21, 105-131.	5.1	95
14	Influences of the Glassy and Rubbery States on the Thermal, Mechanical, and Structural Properties of Doughs and Baked Products. , 1990, , 157-330.		85
15	Cookie- Versus Cracker-Baking—What's the Difference? Flour Functionality Requirements Explored by SRC and Alveography. Critical Reviews in Food Science and Nutrition, 2014, 54, 115-138.	5.4	68
16	Empirical and theoretical models of equilibrium and non-equilibrium transition temperatures of supplemented phase diagrams in aqueous systems (IUPAC Technical Report). Pure and Applied Chemistry, 2010, 82, 1065-1097.	0.9	51
17	Exploration of Sugar Functionality in Sugar‣nap and Wireâ€Cut Cookie Baking: Implications for Potential Sucrose Replacement or Reduction. Cereal Chemistry, 2009, 86, 425-433.	1.1	50
18	State diagrams for improving processing and storage of foods, biological materials, and pharmaceuticals (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83, 1567-1617.	0.9	50

HARRY LEVINE

#	Article	IF	CITATIONS
19	Melting and Crystallization of Sugars in High-Solids Systems. Journal of Agricultural and Food Chemistry, 2013, 61, 3167-3178.	2.4	45
20	Role of glassy and crystalline transitions in the responses of corn starches to heat and high pressure treatments: Prediction of solute-induced barostabilty from solute-induced thermostability. Carbohydrate Polymers, 2008, 72, 293-299.	5.1	29
21	Effects of Extent of Chlorination, Extraction Rate, and Particle Size Reduction on Flour and Gluten Functionality Explored by Solvent Retention Capacity (SRC) and Mixograph. Cereal Chemistry, 2009, 86, 221-224.	1.1	24
22	Comment on the Melting and Decomposition of Sugars. Journal of Agricultural and Food Chemistry, 2012, 60, 10359-10362.	2.4	21
23	Potential Sugar Reduction in Cookies Formulated with Sucrose Alternatives. Cereal Chemistry, 2016, 93, 576-583.	1.1	20
24	Impact of Heat Treatment on Wheat Flour Solvent Retention Capacity (SRC) Profiles. Cereal Chemistry, 2013, 90, 608-610.	1.1	19
25	Exploration of the functionality of sugars in cake-baking, and effects on cake quality. Critical Reviews in Food Science and Nutrition, 2021, 61, 283-311.	5.4	17
26	Effect of Sodium Chloride on Glassy and Crystalline Melting Transitions of Wheat Starch Treated with High Hydrostatic Pressure: Prediction of Solute-induced Barostability from Nonmonotonic Solute-induced Thermostability. Starch/Staerke, 2008, 60, 127-133.	1.1	16
27	Development of a Benchtop Baking Method for Chemically Leavened Crackers. I. Identification of a Diagnostic Formula and Procedure. Cereal Chemistry, 2011, 88, 19-24.	1.1	15
28	Cake Baking with Alternative Carbohydrates for Potential Sucrose Replacement. I. Functionality of Small Sugars and Their Effects on Highâ€Ratio Cakeâ€Baking Performance. Cereal Chemistry, 2016, 93, 562-567.	1.1	15
29	Cake Baking with Alternative Carbohydrates for Potential Sucrose Replacement. II. Functionality of Healthful Oligomers and Their Effects on High-Ratio Cake-Baking Performance. Cereal Chemistry, 2016, 93, 568-575.	1.1	13
30	Oxidative Gelation of Solventâ€Accessible Arabinoxylans is the Predominant Consequence of Extensive Chlorination of Soft Wheat Flour. Cereal Chemistry, 2009, 86, 421-424.	1.1	12
31	Development of a Benchtop Baking Method for Chemically Leavened Crackers II. Validation of the Method. Cereal Chemistry, 2011, 88, 25-30.	1.1	12
32	Application of RVA and Time-Lapse Photography to Explore Effects of Extent of Chlorination, Milling Extraction Rate, and Particle-Size Reduction of Flour on Cake-Baking Functionality. Cereal Chemistry, 2010, 87, 409-414.	1.1	10
33	Water and the Glass Transition — Dependence of the Glass Transition on Composition and Chemical Structure: Special Implications for Flour Functionality in Cookie Baking. , 1994, , 143-188.		10
34	Differential Scanning Calorimetry Analysis of the Effects of Heat and Pressure on Protein Denaturation in Soy Flour Mixed with Various Types of Plasticizers. Journal of Food Science, 2017, 82, 314-323.	1.5	7
35	Polymer Physicochemical Characterization of Oligosaccharides. ACS Symposium Series, 1991, , 219-260.	0.5	6
36	The "Food Polymer Science―approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. Critical Reviews in Food Science and Nutrition, 2018, 58, 972-992.	5.4	5

HARRY LEVINE

#	Article	IF	CITATIONS
37	Microâ€Sugarâ€Snap and Microâ€Wireâ€Cut Cookie Baking with Transâ€Fat and Zeroâ€Transâ€Fat Shortenings. Cereal Chemistry, 2010, 87, 415-419.	1.1	4
38	Influence of hydrocolloids in low-moisture foods – a food polymer science approach. Special Publication - Royal Society of Chemistry, 2004, , 423-436.	0.0	4
39	The "food polymer science―approach to flour functionality and ingredient technology in biscuit baking. Macromolecular Symposia, 1999, 140, 77-80.	0.4	3
40	DSC Analysis of Starch Thermal Properties Related to Functionality in Low-Moisture Baked Goods. , 1998, , 53-68.		1
41	Food Polymer Science Approach to Studies on Freshness and Shelf Life of Foods. ACS Symposium Series, 2002, , 214-222.	0.5	0
42	Tempering. , 2020, , 291-297.		0
43	Application of Thermal Analysis to Cookie, Cracker, and Pretzel Manufacturing. , 2003, , .		0